Gold Nanoparticles - An Enhanced DNA Sensing Tools Using Surface Enhance Raman Scattering

Article Preview

Abstract:

Molecular recognition of specific DNA target is crucial for species authentication, drug discovery, forensic investigation and biodiagnostics. Development of nanoparticles at atomic scale and molecular level offers remarkable biocompatibility in the detection of DNA hybridization. Oligo-functionalized nanoparticles with controlled sizes and shapes have come forward with advantages over the previously documented DNA detection assays. Nanomaterials facilitate signal transduction and synergism in biomolecular interaction, promoting both conventional and newly developed DNA identification platforms. Tailoring of DNA sensing tools with gold nanoparticles (Au NPs) enhances the Surface Enhanced Raman Scattering (SERS) signal, allowing target detection with molecular precision. Here we briefly reviewed the recent AuNPs based SERS-platforms for the specific, sensitive and reliable detection of DNA targets for species authentication in foods and feeds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

439-443

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.L. Wu, J.J. Lin, P.-Y. Hsu, C.P. Hsu, Sensors and Actuators B: Chemical, 155 (2011) 709-715.

Google Scholar

[2] C.S. Thaxton, D.G. Georganopoulou, C.A. Mirkin, Clinica Chimica Acta, 363 (2006) 120-126.

DOI: 10.1016/j.cccn.2005.05.042

Google Scholar

[3] S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, H.-Y. Chen, Chemical Society Reviews, 39 (2010) 4234-4243.

Google Scholar

[4] S. Nie, S.R. Emory, Science, 275 (1997) 1102-1106.

Google Scholar

[5] A. Barhoumi, D. Zhang, F. Tam, N.J. Halas, Journal of the American Chemical Society, 130 (2008) 5523-5529.

Google Scholar

[6] M.e.T. Castañeda, S. Alegret, A. Merkoci, Electroanalysis, 19 (2007) 743-753.

Google Scholar

[7] M.A. El-Sayed, Accounts of chemical research, 34 (2001) 257-264.

Google Scholar

[8] S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, F. Luan, Plasmonics, 6 (2011) 491-506.

Google Scholar

[9] J. Wang, G. Liu, M.R. Jan, Journal of the American Chemical Society, 126 (2004) 3010-3011.

Google Scholar

[10] W. Yuan, H.P. Ho, R.K. Lee, S.K. Kong, Applied optics, 48 (2009) 4329-4337.

Google Scholar

[11] Y.C. Cao, R. Jin, C.A. Mirkin, Science, 297 (2002) 1536-1540.

Google Scholar

[12] A. Barhoumi, N.J. Halas, Journal of the American Chemical Society, 132 (2010) 12792-12793.

Google Scholar

[13] L.A. Gearheart, H.J. Ploehn, C.J. Murphy, The Journal of Physical Chemistry B, 105 (2001) 12609-12615.

Google Scholar

[14] D.K. Lim, K.-S. Jeon, H.M. Kim, J.-M. Nam, Y.D. Suh, Nature materials, 9 (2009) 60-67.

Google Scholar

[15] T. Kang, I. Yoon, J. Kim, H. Ihee, B. Kim, Chemistry-A European Journal, 16 (2010) 1351-1355.

Google Scholar

[16] T. Kang, I. Yoon, K.-S. Jeon, W. Choi, Y. Lee, K. Seo, Y. Yoo, Q.H. Park, H. Ihee, Y.D. Suh, B. Kim, The Journal of Physical Chemistry C, 113 (2009) 7492-7496.

DOI: 10.1021/jp809391c

Google Scholar

[17] T. Kang, S.M. Yoo, I. Yoon, S.Y. Lee, B. Kim, Nano letters, 10 (2010) 1189-1193.

Google Scholar

[18] Y. Lu, Q. Huang, Anal. Methods, (2013).

Google Scholar

[19] S.L. Westcott, S.J. Oldenburg, T.R. Lee, N.J. Halas, Langmuir, 14 (1998) 5396-5401.

Google Scholar

[20] W. Stöber, A. Fink, E. Bohn, Journal of Colloid and Interface Science, 26 (1968) 62-69.

Google Scholar

[21] D.G. Duff, A. Baiker, P.P. Edwards, Langmuir, 9 (1993) 2301-2309.

Google Scholar