Surface Morphology of Acrylate/Carbon Nanotubes Nanocomposites on Mild Steel

Article Preview

Abstract:

Acrylate/carbon nanotubes nanocomposites were prepared using sol-gel method. Carbon nanotubes with different percentage (0.2%, 0.4%, 0.6%, 0.8% and 1.0%) incorporated into acrylate and deposited on mild steel. Surface of acrylate/carbon nanotubes composites were characterized using by field emission scanning electron microscope (FESEM). Carbon nanotubes uniformly distributed in acrylate observed by FESEM shows increase in percentage of carbon nanotubes blend with acrylate the peak distribution become decreases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

451-455

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Musteata, C. Vasile, R. Maksimovs, J. Zicans, R. Meri, and J. Bitenieks, Styrene–acrylate/carbon nanotube nanocomposites: mechanical, thermal, and electrical properties, Proceedings of the Estonian Academy of Sciences, vol. 61, p.172, (2012).

DOI: 10.3176/proc.2012.3.05

Google Scholar

[2] F. Khelifa, M. -E. Druart, Y. Habibi, F. Bénard, P. Leclère, M. Olivier, et al., Sol–gel incorporation of silica nanofillers for tuning the anti-corrosion protection of acrylate-based coatings, Progress in Organic Coatings, vol. 76, pp.900-911, (2013).

DOI: 10.1016/j.porgcoat.2013.02.005

Google Scholar

[3] M. Ghaemy and S. Bekhradnia, Thermal and photocuring of an acrylate-based coating resin reinforced with nanosilica particles, Journal of Coatings Technology and Research, vol. 9, pp.569-578, (2012).

DOI: 10.1007/s11998-012-9401-2

Google Scholar

[4] A. Gergely and T. I. Török, Optimally Balanced Active-Passive Corrosion Protection by Zinc-Rich Paint Coatings Featuring Proper Hybrid Formulation with Polypyrrole Modified Carbon Nanotubes, Materials Science Forum, vol. 752, pp.275-283, (2013).

DOI: 10.4028/www.scientific.net/msf.752.275

Google Scholar

[5] S. Jafarzadeh, A. Adhikari, P. -E. Sundall, and J. Pan, Study of PANI-MeSA conducting polymer dispersed in UV-curing polyester acrylate on galvanized steel as corrosion protection coating, Progress in Organic Coatings, vol. 70, pp.108-115, (2011).

DOI: 10.1016/j.porgcoat.2010.10.011

Google Scholar

[6] K. Y. Lee, K. Y. Kim, W. Y. Han, and D. H. Park, Thermal, electrical characteristics and morphology of poly(ethylene-Co-ethyl acrylate)/CNT nanocomposites, Ieee Transactions on Dielectrics and Electrical Insulation, vol. 15, pp.205-213, Feb (2008).

DOI: 10.1109/t-dei.2008.4446752

Google Scholar

[7] Y. F. Li, Z. P. Zeng, D. Wang, X. G. Wu, and L. S. Qiang, Polyaniline/Fluorocarbon Composite Emulsion Coatings for Anticorrosion to Mild Steel, Applied Mechanics and Materials, vol. 151, pp.323-326, (2012).

DOI: 10.4028/www.scientific.net/amm.151.323

Google Scholar

[8] M. S. Shamsudin, M. R. Mahmud, F. S. Husairi, M. K. Harun, A. B. Suriani, S. Abdullah, et al., Micro-Raman, Optical and Impedance Characteristics of CNT-Substituted Acrylate/CNT Nanocomposite Thin Film, Advanced Materials Research, vol. 832, pp.286-291, (2013).

DOI: 10.4028/www.scientific.net/amr.832.286

Google Scholar

[9] M. N. dos Santos, C. V. Opelt, S. H. Pezzin, S. C. Amico, C. E. da Costa, J. C. Milan, et al., Nanocomposite of Photocurable Epoxy-acrylate Resin and Carbon Nanotubes: Dynamic-mechanical, Thermal and Tribological Properties, Materials Research-Ibero-American Journal of Materials, vol. 16, pp.367-374, Mar-Apr (2013).

DOI: 10.1590/s1516-14392012005000175

Google Scholar

[10] P. Vandervorst, C. H. Lei, Y. Lin, O. Dupont, A. B. Dalton, Y. P. Sun, et al., The fine dispersion of functionalized carbon nanotubes in acrylic latex coatings, Progress in Organic Coatings, vol. 57, pp.91-97, (2006).

DOI: 10.1016/j.porgcoat.2006.07.005

Google Scholar