Cytotoxicity Assessment of SH-SY5Y Cells Grown on Graphene Sheet

Article Preview

Abstract:

We investigate the effect of cell culture conditions, using pristine graphene sheets as growth substrate, on the human nerve cell line (SH-SY5Y). In order to evaluate cell viability and morphology, we applied the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, and fluorescence microscopy of cells stained with Hochest 33342 and Calcein AM. Human nerve cells exhibited 84% viability on pristine graphene sheets compared with control (cell culture polystyrene) after 3 days culturing. Fluorescence data showed that the presence of graphene did not influence cell morphology. These results suggest that graphene sheets may be used for biological applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

311-314

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets, Nano Lett. 7 (2007) 3499-3503.

DOI: 10.1021/nl072090c

Google Scholar

[2] M. I. Katsnelson, K. S. Novoselov, Graphene: New bridge between condensed matter physics and quantum electrodynamics, Solid State Commun. 143 (2007) 3-13.

DOI: 10.1016/j.ssc.2007.02.043

Google Scholar

[3] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth, The structure of suspended graphene sheets, Nature 446 (2007) 60-63.

DOI: 10.1038/nature05545

Google Scholar

[4] N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi, H. Marchetto, Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes, Adv. Funct. Mater. 18 (2008).

DOI: 10.1002/adfm.200800951

Google Scholar

[5] H. A. Weng, C. C. Wu, C. C. Chen, C. C. Ho, S. J. Ding, Preparation and properties of gold nanoparticle-electrodeposited titanium substrates with Arg-Gly-Asp-Cys peptides, J. Mater. Sci. Mater. Med. 21 (2010) 1511-1519.

DOI: 10.1007/s10856-010-4026-4

Google Scholar

[6] N. Li, X. Zhang, Q. Song, R. Su, Q. Zhang, T. Kong, L. Liu, G. Jin, M. Tang, G. Cheng, The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates, Biomater. 32 (2011) 9374-9382.

DOI: 10.1016/j.biomaterials.2011.08.065

Google Scholar

[7] O. Vittorio, V. Raffa, A. Cuschieri, Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells, Nanomedicine. 5 (2009) 424-431.

DOI: 10.1016/j.nano.2009.02.006

Google Scholar

[8] M. Lv, Y. Zhang, L. Liang, M. Wei, W. Hu, X. Li, Q. Huang, Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line, Nanoscale. 4 (2012) 3861-3866.

DOI: 10.1039/c2nr30407d

Google Scholar

[9] Z. Xun, D. Y. Lee, J. Lim, C. A. Canaria, A. Barnebey, S. M. Yanonne, C. T. McMurray, Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells, Mech. Age. Dev. 133 (2012).

DOI: 10.1016/j.mad.2012.01.008

Google Scholar

[10] S. Y. Park, J. Park, S. H. Sim, M. G. Sung, K. S. Kim, B. H. Hong, S. Hong, Enhanced differentiation of human neural stem cells into neurons on graphene, Adv. Mater. 23 (2011) H263-267.

DOI: 10.1002/adma.201101503

Google Scholar

[11] T. R. Nayak, , H. Andersen, V. S. Makam, C. Khaw, S. Bae, X. Xu, P. L. Ee, J. H. Ahn, B. H. Hong, G. Pastorin, B. Ozyilmaz, Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells, ACS nano. 5 (2011).

DOI: 10.1021/nn200500h

Google Scholar

[12] S. B. Jo, J. Park, W. H. Lee, K. Cho, B. H. Hong, Large-area graphene synthesis and its application to interface-engineered field effect transistors, Solid State Commun. 152 (2012) 1350-1358.

DOI: 10.1016/j.ssc.2012.04.056

Google Scholar

[13] S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5 (2010).

DOI: 10.1038/nnano.2010.132

Google Scholar

[14] Y. Chang, S. T. Yang, J. H. Liu, E. Dong, Y. Wang, A. Cao, Y. Liu, H. Wang, In vitro toxicity evaluation of graphene oxide on A549 cells, Toxicol. Lett. 200 (2011) 201-210.

DOI: 10.1016/j.toxlet.2010.11.016

Google Scholar

[15] J. Kwak, J. H. Chu, J. K. Choi, S. D. Park, H. Go, S. Y. Kim, K. Park, S. D. Kim, Y. W. Kim, E. Yoon, S. Kodambaka, S. Y. Kwon, Near room-temperature synthesis of transfer-free graphene films, Nat. Commun. 3 (2012) 645-647.

DOI: 10.1038/ncomms1650

Google Scholar