Characterization of Mg0.8Zn0.2TiO3 Prepared via Liquid Phase Sintering

Article Preview

Abstract:

Mg0.8Zn0.2TiO3 powder was synthesized by dissolved method and calcined at 550 °C for 4 hours. The powder exhibited single phase of Mg0.8Zn0.2TiO3 and nano size particle. Sintered pellet samples were prepared by compacting calcined powder which contains 4wt% B2O3 (MZTA), 4wt% Bi2O3 (MZTB) as liquid additive and non-additive sample (MZTC). Phase identification and its percentage were analyzed based on XRD pattern using Rietveld method. The result shows major phase Mg0.8Zn0.2TiO3 ranging from 72.83% for MZTA, 77.9% for MZTB and 82.61% for MZTC. Furthermore, minor phases were identified as Mg2TiO4 and other trace compound Mg3TiO2(BO3)2 for boron additive. Sintered pellet densities were determined by Archimedes method indicate that Bi2O3 additive has the most effective for densification. Microstructure characterization using SEM show that MZTB possesses the largest grain size ≈3.4µm followed by MZTA 2.3µm and MZTC 1.78µm. Dielectrics characterizations within frequency 1 Hz – 32 MHz exhibited space charge polarization characteristic for frequency <1 kHz, however for frequency >1 kHz showed frequency independence of dipolar polarizations and low dielectric loss having εr~17.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-14

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. -L. Huang, J. L. Hou, C. -L. Pan, C. -Y. Huang, C. -W. Peng, C. -H. Wei, Effect of ZnO additive on sintering behavior and microwave dielectric properties of 0. 95MgTiO3–0. 05CaTiO3 ceramics, J. Alloys and Compounds. 450 (2008) 359-363.

DOI: 10.1016/j.jallcom.2006.10.132

Google Scholar

[2] J. Bernard, D. Houivet, J. El Fallah, and J. M. Haussonne, MgTiO3 for Cu base metal multilayer ceramic capacitors, J. Eur. Ceram. Soc. 24 (2004) 1877-1881.

DOI: 10.1016/s0955-2219(03)00461-8

Google Scholar

[3] F. Belnou, J. Bernard, D. Houivet, and J. -M. Haussonne, Low temperature sintering of MgTiO3 with bismuth oxide based additions, J. Eur. Ceram. Soc. 25 (2005) 2785-2789.

DOI: 10.1016/j.jeurceramsoc.2005.03.140

Google Scholar

[4] Y. -F. Deng, S. -D. Tang, L. -Q. Lao, and S. -Z. Zhan, Synthesis of magnesium titanate nanocrystallites from a cheap and water-soluble single source precursor, Inorg. Chim. Acta. 363 (2010) 827-829.

DOI: 10.1016/j.ica.2009.11.020

Google Scholar

[5] S. Pratapa, M. A. Baqiya, R. Lestari, and R. Angela, A simple dissolved metals mixing method to produce high-purity MgTiO3 nanocrystals, AIP Conf. Proc. 1586 (2014) 39-42.

DOI: 10.1063/1.4866726

Google Scholar

[6] C. -L. Huang, C. -L. Pan, and S. -J. Shium, Liquid phase sintering of MgTiO3–CaTiO3 microwave dielectric ceramics, Mater. Chem. Phys. 78 (2003) 111-115.

DOI: 10.1016/s0254-0584(02)00311-5

Google Scholar

[7] M. -L. Hsieh, L. -S. Chen, H. -C. Hsu, S. Wang, M. -P. Houng, and S. -L. Fu, Effect of oxide additives on the low-temperature sintering of dielectrics (Zn, Mg)TiO3, Mate. Res. Bull. 43 (2008) 3122-3129.

DOI: 10.1016/j.materresbull.2007.11.005

Google Scholar

[8] B. A. Wechsler and R. B. Von Dreele, Structure refinements of Mg2TiO4, MgTiO3 and MgTi2O5 by time-of-flight neutron powder diffraction, Acta Crystallogr. Sect. B : Struct. Sci. 45 (1989) 542-549.

DOI: 10.1107/s010876818900786x

Google Scholar

[9] K. -W. Tay, Y. -P. Fu, J. -F. Huang, and H. -C. Huang, Effect of Bi2O3 and B2O3 additives on the sintering temperature, microstructure, and microwave dielectric properties for Sm(Mg0. 5Ti0. 5)O3 ceramics, Ceram. Int. 37 (2011) 1025-1031.

DOI: 10.1016/j.ceramint.2010.11.017

Google Scholar

[10] S. Fujino, C. Hwang, and K. Morinaga, Surface tension of PbO-B2O3 and Bi2O3-B2O3 glass melts, J. Mater. Sci. 40 (2005) 2207-2212.

DOI: 10.1007/s10853-005-1934-7

Google Scholar

[11] S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina, J. Am. Ceram. Soc. 80 (1997) 1885-1888.

DOI: 10.1111/j.1151-2916.1997.tb03066.x

Google Scholar