[1]
Z.G. Zao and M. Miyauchi, Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts, Angew. Chem. Int. Ed 47 (2008) 7051–7055.
DOI: 10.1002/anie.200802207
Google Scholar
[2]
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269–271.
DOI: 10.1126/science.1061051
Google Scholar
[3]
H. Irie, Y. Watanabe, and K. Hashimoto, Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, J. Phys. Chem. B 107 (2003) 5483–5486.
DOI: 10.1021/jp030133h
Google Scholar
[4]
W. Morales, M. Cason, O. Aina, N.R. de Tacconi, and K. Rajeshwar, Combustion synthesis and characterization of nanocrystalline WO3, J. Am. Chem. Soc. 130 (2008) 6318–6319.
DOI: 10.1021/ja8012402
Google Scholar
[5]
D. Hidayat, A. Purwanto, W.N. Wang, and K. Okuyama, Preparation of size controlled tungsten oxide nanoparticles and evaluation of their adsorption performance, Mater. Res. Bull. 45 (2010) 165–173.
DOI: 10.1016/j.materresbull.2009.09.025
Google Scholar
[6]
D.J. Ham, A. Phuruangrat, S. Thongtem, and J.S. Lee, Hydrothermal synthesis of monoclinic WO3 nanoplates and nanorods used as an electrocatalyst for hydrogen evolution reactions from water, Chem. Eng. J. 165 (2010) 365–369.
DOI: 10.1016/j.cej.2010.09.003
Google Scholar
[7]
K. Takehara, K. Yamazaki, M. Miyazaki, Y. Yamada, S. Ruenphet, A. Jahangir, D. Shoham, M. Okamura, and M. Nakamura, Inactivation of avian influenza virus H1N1 by photocatalyst under visible light irradiation, Virus Res. 151 (2010) 102–103.
DOI: 10.1016/j.virusres.2010.03.006
Google Scholar
[8]
H. Widiyandari, A. Purwanto, R. Balgis, T. Ogi, and K. Okuyama, CuO/WO3 and Pt/WO3 nanocatalysts for efficient pollutant degradation using visible light irradiation, Chem. Eng. J. 180 (2012) 323– 329.
DOI: 10.1016/j.cej.2011.10.095
Google Scholar
[9]
R. Abe, H. Takami, N. Murakami, and B. Ohtani, Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide, J. Am. Chem. Soc. 130 (2008) 7780–7781.
DOI: 10.1021/ja800835q
Google Scholar
[10]
S.M. Sun, W.Z. Wang, S.Z. Zeng, M. Shang, and L. Zhang, Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation, J. Hazard. Mater. 178 (2010) 427–433.
DOI: 10.1016/j.jhazmat.2010.01.098
Google Scholar
[11]
Q. Xiang, G.F. Meng, H.B. Zhao, Y. Zhang, H. Li, W.J. Ma, and J.Q. Xu, Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing J. Phys. Chem. C 114 (2010) 2049–(2055).
DOI: 10.1021/jp909742d
Google Scholar
[12]
A. Purwanto, H. Widiyandari, T. Ogi and K. Okuyama, Role of particle size for platinum-loaded tungsten oxide nanoparticles during dye photodegradation under solar-simulated irradiation, Catal. Comm. 12 (2011) 525-529.
DOI: 10.1016/j.catcom.2010.11.020
Google Scholar
[13]
H. Widiyandari, A. Purwanto, V. G. S. Kadarisman., and I. Firdaus, Synthesis of tungsten oxide (wo3) film on glass substrate using aqueous based solution spray deposition method, Adv. Mater. Res.J. 896, (2014) 506-509.
DOI: 10.4028/www.scientific.net/amr.896.506
Google Scholar
[14]
Z. Xu, I. Tabata, K. Hirogaki, K. Hisad, T. Wang, S. Wang, and T. Hori, Preparation of platinum-loaded cubic tungsten oxide: A highly efficient visible light-driven photocatalyst, Mat. Lett. 65, (2011) 1252-1256.
DOI: 10.1016/j.matlet.2010.12.011
Google Scholar
[15]
H. Aliah, Immobilization of TiO2 on the surface of polypropylene granular polymer and its application as the photocatalyst on the methylene blue photodegradation, Ph.D. Thesis, Institut Teknologi Bandung (2012).
Google Scholar