The Influence of Montmorillonite Incorporation in Mn-Doped ZnO Nanoparticles for Photocatalytic Degradation of Organic Dyes

Article Preview

Abstract:

The present study compares the photocatalytic decolorization ability of bare Mn-doped ZnO and montmorillonite modified Mn-doped ZnO nanoparticles towards aqueous solution of organic dyes (methylene blue and malachite green) under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, electron spin resonance, and diffuse reflectance spectroscopy. Comparison of degradation efficiency demonstrated that montmorillonite modified Mn-doped ZnO nanoparticles exhibited higher activity than bare Mn-doped ZnO nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-200

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ruh Ullah and Joydeep Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J Hazard Mater 156 (2008)194-200.

DOI: 10.1016/j.jhazmat.2007.12.033

Google Scholar

[2] C. Karunakaran, V. Rajeswari, and P. Gomathisankar, Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO, Solid State Sci. 13 (2011) 923-928.

DOI: 10.1016/j.solidstatesciences.2011.02.016

Google Scholar

[3] Qi Xiao and Chi Yao, Preparation and visible light photocatalytic activity of Zn1−xFexO nanocrystalline, Mater Chem Phys. 130 (2011) 5-9.

Google Scholar

[4] Min Fu, Yalin Li, Siwei fu, Peng Lu, Jing Liu, and Fan Dong, Sol-gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles, Appl Surf Sci. 258 (2011) 1587-1591.

DOI: 10.1016/j.apsusc.2011.10.003

Google Scholar

[5] S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu, V. Murugesan, and K. Ariga, Photocatalytic degradation of 2, 4, 6-trichlorophenol using lanthanum doped ZnO in aqueous suspension. Catal. Commun. 8 (2007) 1377–1382.

DOI: 10.1016/j.catcom.2006.12.001

Google Scholar

[6] Ruby Chauhan, A. Kumar, R.P. Chaudhary, Structural and photocatalytic studies of Mn doped TiO2 nanoparticles, Spectrochim Acta A Mol Biomol Spectrosc. 98 (2012) 256–264.

DOI: 10.1016/j.saa.2012.08.009

Google Scholar

[7] A. Neren Ökte, Özge Yılmaz, Photodecolorization of methyl orange by yttrium incorporated TiO2 supported ZSM-5, Appl Catal B Environ. 85 (2008) 92-102.

DOI: 10.1016/j.apcatb.2008.07.025

Google Scholar

[8] Zhi Liu, Pengfei Fang, Shaojie Wang, Yuanpeng Gao, Feitai Chen, Feng Zheng, Yang Liu, Yiqun Dai, Photocatalytic degradation of gaseous benzene with CdS-sensitized TiO2 film coated on fiberglass cloth. J. Mol. Catal. A: Chem. 363–364 (2012).

DOI: 10.1016/j.molcata.2012.06.004

Google Scholar

[9] Daria Kibanova, M. Trejo, H. Destaillats, Javiera Cervini-Silva, Synthesis of hectorite–TiO2 and kaolinite–TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants, Appl Clay Sci. 42 (2009) 563–568.

DOI: 10.1016/j.clay.2008.03.009

Google Scholar

[10] Rosari Saleh, Nadia F. Djaja, Suhendro P. Prakoso, The correlation between magnetic and structural properties of nanocrystalline transition metal-doped ZnO particles prepared by the co-precipitation method, J Alloy Compd. 546 (2013) 48–56.

DOI: 10.1016/j.jallcom.2012.08.056

Google Scholar

[11] G.K. Williamson, W.H. Hall, X-ray line broadening from filed Al and Wolfram, Acta Metall. 1 (1953) 22-31.

DOI: 10.1016/0001-6160(53)90006-6

Google Scholar

[12] Bruce Hapke, University Press, Cambridge, (1993).

Google Scholar

[13] C. Aydin, M.S. Abd El-sadek, KaiboZheng, I.S. Yahia, and F. Yakuphanoglu, Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol-gel calcination technique, Opt Laser Technol. 48, (2013) 447–452.

DOI: 10.1016/j.optlastec.2012.11.004

Google Scholar

[14] J. Anghel, A. Thurber, D. A Tenne, C. B Hanna, and A. Punnoose, Correlation between saturation magnetization, bandgap, and lattice volume of transition metal (M= Cr, Mn, Fe, Co, or Ni) doped Zn1-xMxO nanoparticles. J Appl Phys 107 (2010) 09E314.

DOI: 10.1063/1.3360189

Google Scholar

[15] R. Saravanan, V. K. Gupta, V. Narayanan, A. Stephen, Comparative study on photocatalytic activity of ZnO prepared by different methods, J Mol Liq. 181 (2013) 133-141.

DOI: 10.1016/j.molliq.2013.02.023

Google Scholar

[16] A. Jagannatha Reddy, M.K. Kokila, H. Nagabhushana, J.L. Rao, B.M. Nagabhushana, C. Shivakumara, R.P.S. Chakradhar, EPR and photoluminescence studies of ZnO: Mn nanophosphors prepared by solution combustion route, Spectrochim Acta A. 79 (2011).

DOI: 10.1016/j.saa.2011.03.014

Google Scholar

[17] Y. Du, R.Z. Chen, J.F. Yao, H.T. Wang, Facile fabrication of porous ZnO by thermal treatment of zeolitic imidazolate framework-8 and its photocatalytic activity, J Alloys Compd. 551 (2013) 125-130.

DOI: 10.1016/j.jallcom.2012.10.045

Google Scholar

[18] S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Influence of Mn doping on the microstructure and optical property of ZnO, Materials Science in Semiconductor Processing 11 (2008) 6–12.

DOI: 10.1016/j.mssp.2008.04.005

Google Scholar

[19] D.J. Petkowicz, R. Brambilla, C. Radtke, C.D.S. da Silva, Z.N. da Rocha, S.B.C. Pergher, J.H.Z. dos Santos, Applied Catalyst A 357 (2009) 125-134.

DOI: 10.1016/j.apcata.2008.12.040

Google Scholar

[20] Cheng Wang, Huisheng Shi, Yan Li, Applied Surface Science 258 (2012) 4328–4333.

Google Scholar

[21] Cheng Wang, Huisheng Shi, Yan Li, Applied Surface Science 257 (2011) 6873–6877.

Google Scholar

[22] J. Das, I.R. Evans, D. Khushalani, Inorganic Chemistry 48 (2009) 3508-3510.

Google Scholar

[23] Laura Borgnino, C.E. Giacomelli, M.J. Avena, C.P. De Pauli, Colloids and Surfaces A: Physicochemical and Engineering Aspects 353 (2010) 238-244.

DOI: 10.1016/j.colsurfa.2009.11.022

Google Scholar

[24] D. Karmakar, S. K. Mandal, R. M. Kadam, P. L. Paulose, A. K. Rajarajan,T. K. Nath, A. K. Das, I. Dasgupta, and G. P. Das, Physical Review B75 (2007)144404.

DOI: 10.1103/physrevb.75.144404

Google Scholar

[25] M Kadam, M. K Bhide, M. D Sastry, J. V Yakhmi, and O. Kahn, Chemistry Physics Letters 357 (2002) 457.

Google Scholar

[26] Cheng Wang, Huisheng Shi, Yan Li, Applied Surface Science 257 (2011) 6873-6877.

Google Scholar

[27] M.I. Litter, J.A. Navío, Journal of Photochemistry and Photobiology A: Chemistry 98 (1996) 171-181.

Google Scholar

[28] Rosari Saleh, Nadia F. Djaja, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 130 (2014) 581-590.

DOI: 10.1016/j.saa.2014.03.089

Google Scholar

[29] L. Gomathi Devi, Nagaraju Kottam, B. Narasimha Murthy, S. Girish Kumar, Journal of Molecular Catalysis A: Chemical 328 (2010) 44–52.

Google Scholar