Effect of TiO2 and MgO on Microstructure of α-Alumina Ceramics and its Sintering Behavior

Article Preview

Abstract:

Observation on the effect of adding titanium oxide (TiO2) and magnesium oxide (MgO) on the sintering of α-alumina (Al2O3) has been performed. In this study, technical alumina used as basic material in which the sample is formed by the pressureless sintering/cold press and sintered at 1500°C which is lower than alumina sintering temperature at 1700°C. Elemental analysis, observation of microstructure, hardness, fracture toughness and density measurements were carried out to determine the physical and mechanical properties of alumina. The results indicate a change in the microstructure where the content of the platelet structure are much more than the equilateral structure. At sintering temperature of 1500°C, neck growth occurs at ceramics grain, supported by the results of the density test which indicate perfect compaction has occurred in this process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

519-523

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Medvedovski, Alumina–mullite ceramics for structural applications, Ceram Int. 32 (2006) 369–375.

DOI: 10.1016/j.ceramint.2005.04.001

Google Scholar

[2] Y.K. Paek, E. Suvaci and G.L. Messing, Preparation and Fracture Behavior of Alumina Platelet Reinforced Alumina-Monazite Composites, Material Transcactions, 43 (2002) 3262 – 3265.

DOI: 10.2320/matertrans.43.3262

Google Scholar

[3] Ting, et al., Sintering of Alumina with Titania as Sintering Additive, ICCBT (2008) p.197 – 202.

Google Scholar

[4] D.S. Horn and G.L. Messing, Anisotropic grain growth in TiO2-doped alumina, Mater Sci Eng A. 195 (1995)169 – 178.

DOI: 10.1016/0921-5093(94)06516-0

Google Scholar

[5] J.S. Forrester, et al., Effect of Mechanical Milling on the Sintering Behaviour of Alumina, J. Aust. Ceram. Soc. 44 (2008) 47-52.

Google Scholar

[6] P. Rao, M. Iwasa and I. Kondoh, Properties of low-temperature-sintered high purity α-alumina ceramics, J Mater Sci Lett 19 (2000) 543 – 545.

Google Scholar

[7] J. Mollá, R. Moreno and A. Ibarra, Effect of Mg doping on dielectric properties of alumina, J Appl Phys 80, 1028, (1996).

DOI: 10.1063/1.362836

Google Scholar

[8] Kurmidi, Sintesis Keramik Al2TiO5 Densitas Tinggi dengan Aditif MgO, Undergraduate Thesis, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, (2011).

DOI: 10.15676/ijeei.2015.7.3.11

Google Scholar

[9] Santiani, Pengaruh Penambahan MgO pada Sifat Fisik dan Mekanik Keramik β – Al2O3, Undergraduate Thesis, Institut Pertanian Bogor, Bogor, Indonesia , (2002).

DOI: 10.6066/jtip.2016.27.2.165

Google Scholar

[10] M.W. Barsoum, Fundamentals of Ceramics, Institute of Physics Publishing Bristol and Philadelphia, USA, (1997).

Google Scholar

[11] T. Ikeagami and K. Kotani, Some Roles of MgO and TiO2 in Densification of a Sinterable Alumina, J. Am. Ceram. Soc, 70 (12) (1987), 885 – 890.

DOI: 10.1111/j.1151-2916.1987.tb04911.x

Google Scholar

[12] A. Johan, Karakterisasi Sifat Fisik dan Mekanik Bahan Refraktori α-Al2O3 Pengaruh Penambahan TiO2, Jurnal Penelitian Sains Vol. 12, Nomer 2(B) 12207, (2009).

Google Scholar

[13] C.J. Wang, C.Y. Huang and Y.C. Wu, Two-step sintering of fine alumina-zirconia ceramics, Ceram int, (2008).

Google Scholar

[14] S. Lio, H. Yamamoto, and T. Mitsuoka, Microstructure control of alumina ceramics, 24th Annual conference on Composites, Advanced Ceramics, Materials, Structures-B: Ceramics Engineering and Science Proceedings, 21(4), (2009).

DOI: 10.1002/9780470294635.ch55

Google Scholar

[15] A. Kebbede, G.L. Messing, and A.H. Carim, Grain Boundaries in Titania-Doped α-Alumina with Anisotropic Microstructure, J. Am. Ceram. Soc, 80 (1997), 2814 – 20.

DOI: 10.1111/j.1151-2916.1997.tb03198.x

Google Scholar

[16] W. Jo, D.Y. Kim and N.M. Hwang, Effect of Interface Structure on the Microstructural Evolution of Ceramics, J Am Ceram Soc. 89 (2006) 2369 – 2380.

Google Scholar