Mesoporous SnO2 by Nanocasting Route Using Various Silica Templates for Gas Sensing Application

Article Preview

Abstract:

Mesoporous SnO2 was successfully synthesized via nanocasting route using various silica matrices likely KIT-6, SBA-15 and SBA-16 as hard templates. The chemical and structural properties of these materials were characterized by means of XRD, N2 adsorption-desorption and TEM analyses. All replica products exhibited well-defined mesoporous structures and large surface areas as well as highly crystalline frameworks. Sensors were fabricated from the as-prepared mesoporous SnO2 replicas and used to test the response to 1000 ppm of ethanol vapour at different operating temperatures. The results showed that the mesoporous SnO2 sensors nanocasted from KIT-6, SBA-15 and SBA-16 silica templates exhibits excellent gas response as compared to a bulk SnO2 material, suggesting the potential application of the sensor for detecting ethanol vapour. Maximum sensitivity (~ 18.7) was reached at 300 °C using mesoporous SnO2 sensor nanocasted from KIT-6 silica. It can be explained by the large surface area and well-defined mesostructure of SnO2(KIT-6), which lead to highly effective surface interaction between the ethanol molecules and the surface active sites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

140-146

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. -I. Lee, K. -J. Lee, D. -H. Lee, Y. -K. Jeong, H.S. Lee and Y. -H. Choa, Preparation and gas sensitivity of SnO2 nanopowder homogenously doped with Pt nanoparticles, Current Applied Physics 9 (2009) 79-81.

DOI: 10.1016/j.cap.2008.08.024

Google Scholar

[2] M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou and H.K. Liu, Preparation and electrochemical properties of SnO2 nanowires for application in lithium‐ion batteries, Angewandte Chemie 119 (2007) 764-767.

DOI: 10.1002/ange.200603309

Google Scholar

[3] S. Chappel, S. -G. Chen and A. Zaban, TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells, Langmuir 18 (2002) 3336-3342.

DOI: 10.1021/la015536s

Google Scholar

[4] K. Yu, Z. Wu, Q. Zhao, B. Li and Y. Xie, High-temperature-stable Au@ SnO2 core/shell supported catalyst for CO oxidation, The Journal of Physical Chemistry C 112 (2008) 2244-2247.

DOI: 10.1021/jp711880e

Google Scholar

[5] M. Aziz, S.S. Abbas, W.R.W. Baharom and W.Z.W. Mahmud, Structure of SnO2 nanoparticles by sol–gel method, Materials Letters 74 (2012) 62-64.

DOI: 10.1016/j.matlet.2012.01.073

Google Scholar

[6] D. Chen and L. Gao, Facile synthesis of single-crystal tin oxide nanorods with tunable dimensions via hydrothermal process, Chemical Physics Letters 398 (2004) 201-206.

DOI: 10.1016/j.cplett.2004.09.055

Google Scholar

[7] N. Van Hieu, Highly reproducible synthesis of very large-scale tin oxide nanowires used for screen-printed gas sensor, Sensors and Actuators B: Chemical 144 (2010) 425-431.

DOI: 10.1016/j.snb.2009.02.043

Google Scholar

[8] J. Wang, N. Du, H. Zhang, J. YU and D. Yang, Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries, The Journal of Physical Chemistry C 115 (2011) 11302-11305.

DOI: 10.1021/jp203168p

Google Scholar

[9] H.X. Yang, J.F. Qian, Z.X. Chen, X.P. Ai and Y.L. Cao, Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment, The Journal of Physical Chemistry C 111 (2007).

DOI: 10.1021/jp074159a

Google Scholar

[10] X. Guo, Y. Kang, L. Wang, X. Liu, J. Zhang, T. Yang, S. Wu and S. Wang, Mesoporous tin dioxide nanopowders based sensors to selectively detect ethanol vapour, Materials Science and Engineering: C 31 (2011) 1369-1373.

DOI: 10.1016/j.msec.2011.05.002

Google Scholar

[11] M. Hayashi, T. Hyodo, Y. Shimizu and M. Egashira, Effects of microstructure of mesoporous SnO2 powders on their H2 sensing properties, Sensors and Actuators B: Chemical 141 (2009) 465-470.

DOI: 10.1016/j.snb.2009.07.035

Google Scholar

[12] A.H. Lu and F. Schüth, Nanocasting: A versatile strategy for creating nanostructured porous materials, Advanced Materials 18 (2006) 1793-1805.

DOI: 10.1002/adma.200600148

Google Scholar

[13] H. Kim and J. Cho, Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials, Journal of Materials Chemistry 18 (2008) 771-775.

DOI: 10.1039/b714904b

Google Scholar

[14] J. K. Shon, S. S. Kong, Y. S. Kim, J. -H. Lee, W. K. Park, S. C. Park, J. M. Kim, Solvent-free infiltration method for mesoporous SnO2 using mesoporous silica templates, Microporous and Mesoporous Materials 120 (2009) 441-446.

DOI: 10.1016/j.micromeso.2008.12.022

Google Scholar

[15] J. Juhari, M.Z. Abu Bakar and A.Z. Abdullah, Nanocasting route for the synthesis of ordered mesoporous SnO2 with highly crystalline framework, Journal of Materials Science and Engineering B (2014) Article in Press.

DOI: 10.17265/2161-6221/2014.08.001

Google Scholar

[16] T. Waitz, B. Becker, T. Wagner, T. Sauerwald, C. D. Kohl, M. Tiemann, Ordered nanoporous SnO2 gas sensors with high thermal stability, Sensors and Actuators B: Chemical 150 (2010) 788-793.

DOI: 10.1016/j.snb.2010.08.001

Google Scholar

[17] J.H. Smatt, M. Linden, T. Wagner, C.D. Kohl and M. Tiemann, Micrometer-sized nanoporous tin dioxide spheres for gas sensing, Sensors and Actuators B: Chemical 155 (2011) 483-488.

DOI: 10.1016/j.snb.2010.12.051

Google Scholar

[18] J. Zhao, W. Wang, Y. Liu, J. Ma, X. Li, Y. Du and G. Lu, Ordered mesoporous Pd/SnO2 synthesized by a nanocasting route for high hydrogen sensing performance, Sensors and Actuators B: Chemical 160 (2011) 604-608.

DOI: 10.1016/j.snb.2011.08.035

Google Scholar

[19] F. Kleitz, S. Hei Choi, R. Ryoo, Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes, Chemical Communications (2003) 2136-2137.

DOI: 10.1039/b306504a

Google Scholar

[20] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279 (1998) 548.

DOI: 10.1126/science.279.5350.548

Google Scholar

[21] H. Jin, Q. Wu, C. Chen, D. Zhang, W. Pang, Facile synthesis of crystal like shape mesoporous silica SBA-16, Microporous and Mesoporous Materials 97 (2006) 141-144.

DOI: 10.1016/j.micromeso.2006.08.008

Google Scholar

[22] X. Sun, Y. Shi, H. Ji, X. Li, S. Cai, C. Zheng, Nanocasting synthesis of ordered mesoporous indium tin oxide (ITO) materials with controllable particle size and high thermal stability, Journal of Alloys and Compounds 545 (2012) 5-11.

DOI: 10.1016/j.jallcom.2012.08.003

Google Scholar

[23] Y. Ren, F. Jiao, P. G. Bruce, Tailoring the pore size/ wall thickness of mesoporous transition metal oxides, Microporous and Mesoporous Materials 121 (2009) 90-94.

DOI: 10.1016/j.micromeso.2009.01.008

Google Scholar

[24] G. Satishkumar, L. Titelman, M. V. Landau, Mechanism for the formation of tin oxide nanoparticles and nanowires inside the mesopores of SBA-15, Journal of Solid State Chemistry 182 (2009) 2822-2828.

DOI: 10.1016/j.jssc.2009.07.039

Google Scholar