[1]
Dessouky, H.T., El-Ettouney, H.M. (Eds. ). (2002). Fundamentals of Salt Water Desalination. Elsevier Science, Amsterdam. ISBN: 0-444-50810-4.
Google Scholar
[2]
Shinde, S. S, Bhosale, C. H., Rajpure,K. Y. (2011). Photocatalytic activity of sea water using TiO2catalyst under solar light. Journal of Photochemistry and Photobiology B: Biology 103, 2011. 111–117.
DOI: 10.1016/j.jphotobiol.2011.02.002
Google Scholar
[3]
WateReuse Association Desalination Committee. (2012). Seawater desalination costs, White paper. September 2011, Revised January 2012. Water Reused Association.
Google Scholar
[4]
Popkin R. (1968). Desalination Water for the World's Future. New York, Praeger, (1968).
Google Scholar
[5]
Garcia-Rodriguez L., (2002). Seawater desalination driven by renewable energies: a review. Desalination. 143 (2002) 103-113.
DOI: 10.1016/s0011-9164(02)00232-1
Google Scholar
[6]
Parekh S., Farid M. M., Selman J. R. and Alhallaj S. (2004). Solar desalination with a humidification-dehumidification technique — a comprehensive technical review. Desalination, 166 (2004) 167.
DOI: 10.1016/s0011-9164(04)90007-0
Google Scholar
[7]
Abhang, R. M., Deepak Kumar and Taralkar, S. V. (2011). Design of Photocatalytic Reactor for Degradation of Phenol in Wastewater. International Journal of Chemical Engineering and Applications.
DOI: 10.7763/ijcea.2011.v2.130
Google Scholar
[8]
Suresh, G. P., Shilpi B., Jitendra V., Suresh C. A. (2006). Use of photocatalysts in solar desalination. Desalination 189 (2006) 287–291.
Google Scholar
[9]
Manisha S., Narendra S., Ajay S. (2013). Solar Desalination Using Zinc Oxide as Photocatalyst. Journal of Chemical, Biological and Physical Sciences 2013, Vol. 3, No. 2, 958-962.
Google Scholar
[10]
Efat Chafik. (2003). A new type of seawater desalination plants using solar energy. Desalination 156 (2003) 333-348.
DOI: 10.1016/s0011-9164(03)00364-3
Google Scholar
[11]
Kazuhito H., Hiroshi I., Akira F. (2005). TiO2 photocatalysis: A Historical overview and future prospects. Japanese Journal of Applied Physics. Vol. 44, No. 12 (2005) pp.8269-8285.
Google Scholar
[12]
Vamvuka D., E. Karkaras. (2011). Ash properties and environmental impact of various biomass andcoal fuels and their blends. Fuel Processing Technology, 92, 2011, p.570–581.
DOI: 10.1016/j.fuproc.2010.11.013
Google Scholar
[13]
Emerson Process Managemenat. Theory and Application of Conductivity. (2010).
Google Scholar
[14]
Min-Jin Kim, Kwang-Ho Choo, Hak-Soon Park. (2010). Photocatalytic degradation of seawater organic matter using a submerged membrane reactor. Journal of Photochemistry and Photobiology A: Chemistry 216 (2010) 215–220.
DOI: 10.1016/j.jphotochem.2010.08.011
Google Scholar
[15]
Hasniah A., Mahardika P. A., Masturi, Euis S., Maman B. and Mikrajuddin A. (2012).
Google Scholar
[16]
Tsutomu H., Yasuhiro N., Junichi N., and Yoshio N. (1999). Primary Passages for Various TiO2 Photocatalysts Studied by Means of Luminol Chemiluminescent Probe. J. Phys. Chem. B1999, 103, 4399-4403.
DOI: 10.1021/jp9840984
Google Scholar
[17]
Lin, X. Rong, F., Ji, X., Fu, D. (2010). Carbon-doped mesoporous TiO2 film and its photocatalytic activity, Microporous and Mesoporous Materials. vol. 142, p.276–281, Dec (2010).
DOI: 10.1016/j.micromeso.2010.12.010
Google Scholar
[18]
Bing G., Hangyan S., Kangying S., Yaowu Z., Wensheng N. (2009). The study of the relationship between pore structure and photocatalysis of mesoporous TiO2. J. Chem. Sci., Vol. 121, No. 3, May 2009, p.317–321.
Google Scholar
[19]
Wei, C.H.; Tang, X.H.; Liang, J.R.; Tan, S.Y. Preparation, characterization and photocatalytic activities of boron- and ceriumcodoped TiO2. J. Environ. Sci., 2007, 19, 90-96.
Google Scholar
[20]
Hussain, S. T., Mazhar, M., Siddiqa, A., Javid, H. and Siddiq M. (2012). Cu-S Coped TiO2NanoPhotocatalyst for the Degradation of Environmental and Industrial Pollutants. The Open Catalysis Journal, 2012, 5, 21-30.
DOI: 10.2174/1876214x01205010021
Google Scholar