[1]
M. C. Mesomo, A. D. P. Scheer, E. Perez, P. M. Ndiaye, and M. L. Corazza, Ginger (Zingiber officinale R. ) extracts obtained using supercritical CO2 and compressed propane: Kinetics and antioxidant activity evaluation, J. Supercrit. Fluids, vol. 71, p.102–109, Nov. (2012).
DOI: 10.1016/j.supflu.2012.08.001
Google Scholar
[2]
V. Sindhi, V. Gupta, K. Sharma, S. Bhatnagar, R. Kumari, and N. Dhaka, Potential applications of antioxidants – A review, J. Pharm. Res., vol. 7, no. 9, p.828–835, Sep. (2013).
DOI: 10.1016/j.jopr.2013.10.001
Google Scholar
[3]
I. Stoilova, a Krastanov, a Stoyanova, P. Denev, and S. Gargova, Antioxidant activity of a ginger extract (Zingiber officinale), Food Chem., vol. 102, no. 3, p.764–770, (2007).
DOI: 10.1016/j.foodchem.2006.06.023
Google Scholar
[4]
K. C. Zancan, M. O. . Marques, A. J. Petenate, and M. A. a Meireles, Extraction of ginger (Zingiber officinale Roscoe) oleoresin with CO2 and co-solvents: a study of the antioxidant action of the extracts, J. Supercrit. Fluids, vol. 24, no. 1, p.57–76, Sep. (2002).
DOI: 10.1016/s0896-8446(02)00013-x
Google Scholar
[5]
Y. Shukla and M. Singh, Cancer preventive properties of ginger: a brief review., Food Chem. Toxicol., vol. 45, no. 5, p.683–90, May (2007).
Google Scholar
[6]
S. Malhotra, A. P. Singh, and G. Zingiber, Medicinal properties of Ginger ( Zingiber officinale Rosc . ), vol. 2, no. December, (2003).
Google Scholar
[7]
Y. Yonei and H. Ohinata, Extraction of Ginger Flavor with Liquid or Supercritical Carbon Dioxide, p.156–161, (1995).
DOI: 10.1016/0896-8446(95)90028-4
Google Scholar
[8]
H. Chen, C. Chung, H. Wang, and T. Huang, Application of Taguchi Method to Optimize Extracted Ginger Oil in Different Drying Conditions, vol. 9, p.310–316, (2011).
Google Scholar
[9]
J. Jung and M. Perrut, Particle design using supercritical fluids: Literature and patent survey, J. Supercrit. Fluids, vol. 20, no. 3, p.179–219, Aug. (2001).
DOI: 10.1016/s0896-8446(01)00064-x
Google Scholar
[10]
R. Ghaderi, A Supercritical Fluids Extraction Process for the Production of Drug Loaded Biodegradable Microparticles. (2000).
Google Scholar
[11]
E. L. C. Cheah, L. W. Chan, and P. W. S. Heng, Supercritical carbon dioxide and its application in the extraction of active principles from plant materials, Supercrit. carbon dioxide its Appl. J. Pharm. Sci., vol. 1, p.59–71, (2006).
Google Scholar
[12]
I. Pasquali and R. Bettini, Are pharmaceutics really going supercritical?, Int. J. Pharm., vol. 364, no. 2, p.176–87, Dec. (2008).
DOI: 10.1016/j.ijpharm.2008.05.014
Google Scholar
[13]
P. Hirunsit, Z. Huang, T. Srinophakun, M. Charoenchaitrakool, and S. Kawi, Particle formation of ibuprofen – supercritical CO 2 system from rapid expansion of supercritical solutions ( RESS ): A mathematical model, vol. 154, p.83–94, (2005).
DOI: 10.1016/j.powtec.2005.03.020
Google Scholar
[14]
S. Balachandran, S. E. Kentish, and R. Mawson, The effects of both preparation method and season on the supercritical extraction of ginger, Sep. Purif. Technol., vol. 48, no. 2, p.94–105, Mar. (2006).
DOI: 10.1016/j.seppur.2005.07.008
Google Scholar
[15]
S. W. Lin, T. T. Sue, and T. Y. Ai, Methods of Test For Palm Oil and Palm Oil Products, Volume 1. Palm Oil Research Institute of Malaysia, (1995).
DOI: 10.19103/as.2017.0018.05
Google Scholar
[16]
a. S. Zarena and K. Udaya Sankar, Xanthones enriched extracts from mangosteen pericarp obtained by supercritical carbon dioxide process, Sep. Purif. Technol., vol. 80, no. 1, p.172–178, Jul. (2011).
DOI: 10.1016/j.seppur.2011.04.027
Google Scholar
[17]
A. Z. Hezave, S. Aftab, and F. Esmaeilzadeh, Micronization of ketoprofen by the rapid expansion of supercritical solution process, J. Aerosol Sci., vol. 41, no. 8, p.821–833, Aug. (2010).
DOI: 10.1016/j.jaerosci.2010.01.006
Google Scholar
[18]
Z. Huang, G. -B. Sun, Y. C. Chiew, and S. Kawi, Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS), Powder Technol., vol. 160, no. 2, p.127–134, Dec. (2005).
DOI: 10.1016/j.powtec.2005.08.024
Google Scholar