Solid Oil Particles Formation of Ginger Rhizome Using Rapid Expansion Supercritical Carbon Dioxide Solution (RESS) as an Environmentally Friendly Method

Article Preview

Abstract:

Particles formations of ginger rhizome were successfully produced by using Rapid expansion supercritical solution (RESS). In this study, effect of extraction temperature (40,45,55 and 65 °C) and constant extraction pressure 4000 Psi were investigated on the particle size of the produced particles. Based on the different experimental conditions, the smallest particle size of ginger after processing via the RESS process was obtained at extraction temperature of 40 °C and extraction pressure, 4000 Psi. Temperature is the one factor that can affect the average particle size of the solid oil particle. The size of the ginger particles were monitored by scanning electron microscopy (SEM).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

428-433

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. C. Mesomo, A. D. P. Scheer, E. Perez, P. M. Ndiaye, and M. L. Corazza, Ginger (Zingiber officinale R. ) extracts obtained using supercritical CO2 and compressed propane: Kinetics and antioxidant activity evaluation, J. Supercrit. Fluids, vol. 71, p.102–109, Nov. (2012).

DOI: 10.1016/j.supflu.2012.08.001

Google Scholar

[2] V. Sindhi, V. Gupta, K. Sharma, S. Bhatnagar, R. Kumari, and N. Dhaka, Potential applications of antioxidants – A review, J. Pharm. Res., vol. 7, no. 9, p.828–835, Sep. (2013).

DOI: 10.1016/j.jopr.2013.10.001

Google Scholar

[3] I. Stoilova, a Krastanov, a Stoyanova, P. Denev, and S. Gargova, Antioxidant activity of a ginger extract (Zingiber officinale), Food Chem., vol. 102, no. 3, p.764–770, (2007).

DOI: 10.1016/j.foodchem.2006.06.023

Google Scholar

[4] K. C. Zancan, M. O. . Marques, A. J. Petenate, and M. A. a Meireles, Extraction of ginger (Zingiber officinale Roscoe) oleoresin with CO2 and co-solvents: a study of the antioxidant action of the extracts, J. Supercrit. Fluids, vol. 24, no. 1, p.57–76, Sep. (2002).

DOI: 10.1016/s0896-8446(02)00013-x

Google Scholar

[5] Y. Shukla and M. Singh, Cancer preventive properties of ginger: a brief review., Food Chem. Toxicol., vol. 45, no. 5, p.683–90, May (2007).

Google Scholar

[6] S. Malhotra, A. P. Singh, and G. Zingiber, Medicinal properties of Ginger ( Zingiber officinale Rosc . ), vol. 2, no. December, (2003).

Google Scholar

[7] Y. Yonei and H. Ohinata, Extraction of Ginger Flavor with Liquid or Supercritical Carbon Dioxide, p.156–161, (1995).

DOI: 10.1016/0896-8446(95)90028-4

Google Scholar

[8] H. Chen, C. Chung, H. Wang, and T. Huang, Application of Taguchi Method to Optimize Extracted Ginger Oil in Different Drying Conditions, vol. 9, p.310–316, (2011).

Google Scholar

[9] J. Jung and M. Perrut, Particle design using supercritical fluids: Literature and patent survey, J. Supercrit. Fluids, vol. 20, no. 3, p.179–219, Aug. (2001).

DOI: 10.1016/s0896-8446(01)00064-x

Google Scholar

[10] R. Ghaderi, A Supercritical Fluids Extraction Process for the Production of Drug Loaded Biodegradable Microparticles. (2000).

Google Scholar

[11] E. L. C. Cheah, L. W. Chan, and P. W. S. Heng, Supercritical carbon dioxide and its application in the extraction of active principles from plant materials, Supercrit. carbon dioxide its Appl. J. Pharm. Sci., vol. 1, p.59–71, (2006).

Google Scholar

[12] I. Pasquali and R. Bettini, Are pharmaceutics really going supercritical?, Int. J. Pharm., vol. 364, no. 2, p.176–87, Dec. (2008).

DOI: 10.1016/j.ijpharm.2008.05.014

Google Scholar

[13] P. Hirunsit, Z. Huang, T. Srinophakun, M. Charoenchaitrakool, and S. Kawi, Particle formation of ibuprofen – supercritical CO 2 system from rapid expansion of supercritical solutions ( RESS ): A mathematical model, vol. 154, p.83–94, (2005).

DOI: 10.1016/j.powtec.2005.03.020

Google Scholar

[14] S. Balachandran, S. E. Kentish, and R. Mawson, The effects of both preparation method and season on the supercritical extraction of ginger, Sep. Purif. Technol., vol. 48, no. 2, p.94–105, Mar. (2006).

DOI: 10.1016/j.seppur.2005.07.008

Google Scholar

[15] S. W. Lin, T. T. Sue, and T. Y. Ai, Methods of Test For Palm Oil and Palm Oil Products, Volume 1. Palm Oil Research Institute of Malaysia, (1995).

DOI: 10.19103/as.2017.0018.05

Google Scholar

[16] a. S. Zarena and K. Udaya Sankar, Xanthones enriched extracts from mangosteen pericarp obtained by supercritical carbon dioxide process, Sep. Purif. Technol., vol. 80, no. 1, p.172–178, Jul. (2011).

DOI: 10.1016/j.seppur.2011.04.027

Google Scholar

[17] A. Z. Hezave, S. Aftab, and F. Esmaeilzadeh, Micronization of ketoprofen by the rapid expansion of supercritical solution process, J. Aerosol Sci., vol. 41, no. 8, p.821–833, Aug. (2010).

DOI: 10.1016/j.jaerosci.2010.01.006

Google Scholar

[18] Z. Huang, G. -B. Sun, Y. C. Chiew, and S. Kawi, Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS), Powder Technol., vol. 160, no. 2, p.127–134, Dec. (2005).

DOI: 10.1016/j.powtec.2005.08.024

Google Scholar