[1]
S.R. Vippagunta, H.G. Brittain, D.J.W. Grant, Crystalline solids, Adv. Drug Deliv. Rev. 48 (2001) 3–26.
Google Scholar
[2]
N. Shan, M.J. Zaworotko, The role of cocrystals in pharmaceutical science, Drug Discov. Today 13 (2008) 440–446.
DOI: 10.1016/j.drudis.2008.03.004
Google Scholar
[3]
N. Qiao, M. Li, W. Schlindwein , N. Malek, A. Davies, G. Trappitt, Pharmaceutical cocrystals: An overview, Int. J. Pharm. 419 (2011) 1-11.
DOI: 10.1016/j.ijpharm.2011.07.037
Google Scholar
[4]
I. Miroshynk, S. Mirza, N. Sandler, Pharmaceutical co-crystals - an opportunity for drug product enhancement, Expert Opin. Drug Deliv. 6 (2009) 333–341.
DOI: 10.1517/17425240902828304
Google Scholar
[5]
S.L. Morissette, O. Almarsson, M.L. Peterson, J.F. Remenar, M.J. Read, A.V. Lemmo, S. Ellis, M.J. Cima, C.R. Gardner, High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids, Adv. Drug Deliv. Rev. 56 (2004).
DOI: 10.1016/j.addr.2003.10.020
Google Scholar
[6]
M.A. Mohammad , A. Alhalaweh, S.P. Velaga, Hansen solubility parameter as a tool to predict cocrystal formation, Int. J. Pharm. 407 (2011) 63–71.
DOI: 10.1016/j.ijpharm.2011.01.030
Google Scholar
[7]
B.S. Sekhon, Nutraceutical cocrystals: an overview, RGUHS J. Pharm. Sci. 2 (2012) 16-25.
Google Scholar
[8]
J. Haleblian, W. McCrone, Pharmaceutical applications of polymorphism, J. Pharm. Sci. 58 (1969) 911–929.
DOI: 10.1002/jps.2600580802
Google Scholar
[9]
S. Abd Rahim, R. B. Hammond, A. Y. Sheikh and K. J. Roberts, A comparative assessment of the influence of different crystallization screening methodologies on the solid forms of carbamazepine co-crystals, CrystEngComm. 15 (2013) 3862-3873.
DOI: 10.1039/c3ce26878k
Google Scholar
[10]
A.L. Grzesiak, M. Lang, K. Kim K, A.J. Matzger, Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I, J. Pharm. Sci. 92 (2003) 2260-2271.
DOI: 10.1002/jps.10455
Google Scholar
[11]
H. Cano, N. Gabas, J.P. Canselier, Experimental study on the ibuprofen crystal growth morphology in solution, J. Cryst. Growth 224 (2001) 335–341.
DOI: 10.1016/s0022-0248(01)00969-1
Google Scholar
[12]
S.K. Dwivedi, S. Sattari, F. Jamali, A.G. Mitchell, Ibuprofen racemate and enantiomers: phase diagram, solubility and thermodynamic studies, Int. J. Pharm. 87 (1992) 95–104.
DOI: 10.1016/0378-5173(92)90232-q
Google Scholar
[13]
R. Mahalaxmi, Ravikumar, S. Pandey, A. Shirwaikar, A. Shirwaikar, Effect of recrystallization on size, shape, polymorph and dissolution of carbamazepine, Int. J. PharmTech. Res. 1 (2009) 725-732.
Google Scholar
[14]
C. Acquah, A.T. Karunanithi, M. Cagnetta, L.E.K. Achenie, S.L. Suib, Linear models for prediction of ibuprofen crystal morphology based on hydrogen bonding propensities, Fluid Phase Equilibria 277 (2009) 73–80.
DOI: 10.1016/j.fluid.2008.11.015
Google Scholar
[15]
M.A. O'Mahony, A. Maher, D.M. Croker, Å.C. Rasmuson, B.K. Hodnett, Examining solution and solid state composition for the solution-mediated polymorphic transformation of carbamazepine and piracetam, Cryst. Growth Des. 12 (2012) 1925−(1932).
DOI: 10.1021/cg201665z
Google Scholar
[16]
R. Elqidra, N. Unlu, Y. Capan, G. Sahin, T. Dalkora, A.A. Hincal, Effect of polymorphism on in vitro-in vivo properties of carbamazepine conventional tablets. J. Drug Del. Sci. Tech, 14 (2004) 147-153.
DOI: 10.1016/s1773-2247(04)50027-8
Google Scholar
[17]
N. Rasenack, B.W. Muller, Properties of ibuprofen crsytallized under various conditions: a comparative study, Drug Dev. Ind. Pharm. 28 (2002) 1077-1089.
Google Scholar