Rapid Expansion of Supercritical Fluids for Particle Formation from Pharmaceutical Compounds: A Review

Article Preview

Abstract:

The rapid expansion of supercritical solution (RESS) is a promising method for particle formation. In this paper, general review of fundamental and available results from studies of particle formation by RESS process using carbon dioxide as a solvent for pharmaceutical compounds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

398-404

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Atila, N. Yıldız, and A. Çalımlı, Particle size design of digitoxin in supercritical fluids, J. Supercrit. Fluids, vol. 51, no. 3, p.404–411, Jan. (2010).

DOI: 10.1016/j.supflu.2009.10.006

Google Scholar

[2] Z. Knez and E. Weidner, Particles formation and particle design using supercritical fluids, Curr. Opin. Solid State Mater. Sci., vol. 7, no. 4–5, p.353–361, Aug. (2003).

DOI: 10.1016/j.cossms.2003.11.002

Google Scholar

[3] F. Römer and T. Kraska, Molecular dynamics simulation of the formation of pharmaceutical particles by rapid expansion of a supercritical solution, J. Supercrit. Fluids, vol. 55, no. 2, p.769–777, Dec. (2010).

DOI: 10.1016/j.supflu.2010.08.010

Google Scholar

[4] I. Pasquali, R. Bettini, and F. Giordano, Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals., Adv. Drug Deliv. Rev., vol. 60, no. 3, p.399–410, Feb. (2008).

DOI: 10.1016/j.addr.2007.08.030

Google Scholar

[5] R. Ghaderi, A Supercritical Fluids Extraction Process for the Production of Drug Loaded Biodegradable Microparticles, Uppsala University, (2000).

Google Scholar

[6] J. Jung and M. Perrut, Particle design using supercritical fluids: Literature and patent survey, J. Supercrit. Fluids, vol. 20, no. 3, p.179–219, Aug. (2001).

DOI: 10.1016/s0896-8446(01)00064-x

Google Scholar

[7] A. Tabernero, E. M. Martín del Valle, and M. a. Galán, Supercritical fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling, Chem. Eng. Process. Process Intensif., vol. 60, p.9–25, Oct. (2012).

DOI: 10.1016/j.cep.2012.06.004

Google Scholar

[8] E. Reverchon and I. De Marco, Supercritical fluid extraction and fractionation of natural matter, J. Supercrit. Fluids, vol. 38, no. 2, p.146–166, Sep. (2006).

DOI: 10.1016/j.supflu.2006.03.020

Google Scholar

[9] B. Helfgen, M. Tu, and K. Schaber, Hydrodynamic and aerosol modelling of the rapid expansion of supercritical solutions ( RESS-process ), J. Supercrit. Fluids, vol. 26, p.225–242, (2003).

DOI: 10.1016/s0896-8446(02)00159-6

Google Scholar

[10] S. Ya-Ping, Supercritical Fluid Technology in Materials Science and Engineering Syntheses, Properties and Applications. clemson, south caroline: Marcel Dekker, Inc., 2002, p.387–490.

Google Scholar

[11] B. Helfgen, P. Hils, C. Holzknecht, M. Tu, and K. Schaber, Simulation of particle formation during the rapid expansion of supercritical solutions, J. Aerosol Sci., vol. 32, p.295–319, (2001).

DOI: 10.1016/s0021-8502(00)00080-x

Google Scholar

[12] M. Turk, P. Hils, B. Helfgen, K. Schaber, H. . Martin, and M. . Wahl, Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions ( RESS ): a promising method to improve bioavailability of poorly soluble pharmaceutical agents, J. Supercrit. Fluids, vol. 22, p.75–84, (2002).

DOI: 10.1016/s0896-8446(01)00109-7

Google Scholar

[13] N. Yildiz, Ş. Tuna, O. Döker, and A. Çalimli, Micronization of salicylic acid and taxol (paclitaxel) by rapid expansion of supercritical fluids (RESS), J. Supercrit. Fluids, vol. 41, no. 3, p.440–451, Jul. (2007).

DOI: 10.1016/j.supflu.2006.12.012

Google Scholar

[14] A. Keshavarz, J. Karimi-Sabet, A. Fattahi, A. Golzary, M. Rafiee-Tehrani, and F. a. Dorkoosh, Preparation and characterization of raloxifene nanoparticles using Rapid Expansion of Supercritical Solution (RESS), J. Supercrit. Fluids, vol. 63, p.169–179, Mar. (2012).

DOI: 10.1016/j.supflu.2011.12.005

Google Scholar

[15] A. Z. Hezave and F. Esmaeilzadeh, Micronization of drug particles via RESS process, J. Supercrit. Fluids, vol. 52, no. 1, p.84–98, Feb. (2010).

DOI: 10.1016/j.supflu.2009.09.006

Google Scholar

[16] C. -S. Su, M. Tang, and Y. -P. Chen, Micronization of nabumetone using the rapid expansion of supercritical solution (RESS) process, J. Supercrit. Fluids, vol. 50, no. 1, p.69–76, Aug. (2009).

DOI: 10.1016/j.supflu.2009.04.013

Google Scholar

[17] H. Ksibi, P. Subra, and Y. Garrabos, Formation of fine powders of caffeine by RESS, Adv. Powder Technol., vol. 6, no. 1, p.25–33, Jan. (1995).

DOI: 10.1016/s0921-8831(08)60545-2

Google Scholar

[18] Z. Huang, G. -B. Sun, Y. C. Chiew, and S. Kawi, Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS), Powder Technol., vol. 160, no. 2, p.127–134, Dec. (2005).

DOI: 10.1016/j.powtec.2005.08.024

Google Scholar

[19] H. Baseri and M. N. Lotfollahi, Formation of gemfibrozil with narrow particle size distribution via rapid expansion of supercritical solution process (RESS), Powder Technol., vol. 235, p.677–684, Feb. (2013).

DOI: 10.1016/j.powtec.2012.11.017

Google Scholar

[20] D. Bolten and M. Türk, Micronisation of carbamazepine through rapid expansion of supercritical solution (RESS), J. Supercrit. Fluids, vol. 62, p.32–40, Feb. (2012).

DOI: 10.1016/j.supflu.2011.06.014

Google Scholar

[21] M. Pourasghar, S. Fatemi, A. Vatanara, and A. Rouholamini Najafabadi, Production of ultrafine drug particles through rapid expansion of supercritical solution; a statistical approach, Powder Technol., vol. 225, p.21–26, Jul. (2012).

DOI: 10.1016/j.powtec.2012.03.027

Google Scholar

[22] A. Z. Hezave and F. Esmaeilzadeh, The effects of RESS parameters on the diclofenac particle size, Adv. Powder Technol., vol. 22, no. 5, p.587–595, Sep. (2011).

DOI: 10.1016/j.apt.2010.08.010

Google Scholar

[23] P. M. Gosselin, R. Thibert, M. Preda, and J. N. McMullen, Polymorphic properties of micronized carbamazepine produced by RESS., Int. J. Pharm., vol. 252, no. 1–2, p.225–33, Feb. (2003).

DOI: 10.1016/s0378-5173(02)00649-x

Google Scholar

[24] A. Z. Hezave, S. Aftab, and F. Esmaeilzadeh, Micronization of ketoprofen by the rapid expansion of supercritical solution process, J. Aerosol Sci., vol. 41, no. 8, p.821–833, Aug. (2010).

DOI: 10.1016/j.jaerosci.2010.01.006

Google Scholar

[25] D. Kayrak, U. Akman, and Ö. Hortaçsu, Micronization of Ibuprofen by RESS, J. Supercrit. Fluids, vol. 26, no. 1, p.17–31, May (2003).

DOI: 10.1016/s0896-8446(02)00248-6

Google Scholar

[26] A. Z. Hezave, S. Aftab, and F. Esmaeilzadeh, Micronization of creatine monohydrate via Rapid Expansion of Supercritical Solution (RESS), J. Supercrit. Fluids, vol. 55, no. 1, p.316–324, Nov. (2010).

DOI: 10.1016/j.supflu.2010.05.009

Google Scholar

[27] J. Varshosaz, F. Hassanzadeh, M. Mahmoudzadeh, and a. Sadeghi, Preparation of cefuroxime axetil nanoparticles by rapid expansion of supercritical fluid technology, Powder Technol., vol. 189, no. 1, p.97–102, Jan. (2009).

DOI: 10.1016/j.powtec.2008.06.009

Google Scholar

[28] I. Asghari and F. Esmaeilzadeh, Formation of ultrafine deferasirox particles via rapid expansion of supercritical solution (RESS process) using Taguchi approach., Int. J. Pharm., vol. 433, no. 1–2, p.149–56, Aug. (2012).

DOI: 10.1016/j.ijpharm.2012.05.005

Google Scholar

[29] M. Türk and D. Bolten, Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS): Results for Naproxen, J. Supercrit. Fluids, vol. 55, no. 2, p.778–785, Dec. (2010).

DOI: 10.1016/j.supflu.2010.09.023

Google Scholar

[30] P. -C. Lin, C. -S. Su, M. Tang, and Y. -P. Chen, Micronization of ethosuximide using the rapid expansion of supercritical solution (RESS) process, J. Supercrit. Fluids, vol. 72, p.84–89, Dec. (2012).

DOI: 10.1016/j.supflu.2012.08.013

Google Scholar