[1]
Abbasi, T., Pasman, H., & Abbasi, S. (2010). A Scheme For The Classification Of Explosions In The Chemical Process Industry. Journal of Hazardous Materials 174, 270–280.
DOI: 10.1016/j.jhazmat.2009.09.047
Google Scholar
[2]
Abdolhamidzadeha, B., Che Rosmani , C., Diana Hamid, M., Farrokhmehra, S., Badrib, N., & Rashtchian, D. (2012). Anatomy Of A Domino Accident: Roots, Triggers And Lessons Learnt. Process Safety And Environmental Protection , 424–429.
DOI: 10.1016/j.psep.2012.04.003
Google Scholar
[3]
Jones, D. A. (1992). Nomenclature for Hazard and Risk Assessment in the Process Industries. IChemE.
Google Scholar
[4]
Park , D. J., & Lee, Y. S. (2009). A comparison on predictive models of gas explosions. Korean J. Chem. Eng., 26(2), 313-323.
DOI: 10.1007/s11814-009-0054-5
Google Scholar
[5]
Pritchard, D., & Roberts, A. (1993). Blast effects from vapour cloud explosions: a decade of progress. Safety Science, 527 - 548.
DOI: 10.1016/0925-7535(93)90070-t
Google Scholar
[6]
Raman, R., & Grillo, P. (2005). Minimizing Uncertainty In Vapour Cloud Explosion Modelling. Process Safety and Environmental Protection, 83(B4), 298–306.
DOI: 10.1205/psep.05028
Google Scholar
[7]
R. A. Zulkifli, H. E. Mohanad, A, Rashid Sharif, Assessment on the consequences of Liquefied Petroleum Gas Release Accident in the Road Transportation, in Journal of Applied Sciences, vol. 10, issue 12, pp.1157-1165, (2010).
DOI: 10.3923/jas.2010.1157.1165
Google Scholar
[8]
R. A. Zulkifli, H. E. Mohanad, Abdul Rashid Shariff. 2009. Development and design of Smart Advisory System in the accident of transportation of hazardous material via quantitative risk approach. A Review', Journal of Occupational Safety and Health, 6(12): pg 48-67.
Google Scholar
[9]
Mohanad El-Harbawi, S. Mustapha, Thomas S. Y. Choong, Z. Abdul Rashid, S. Abdul Rashid, and A. A. Sherif, (2010).
Google Scholar
[10]
Mohanad El-Harbawi, S. Mustapha, Thomas S. Y. Choong, Z. Abdul Rashid, S. Abdul Rashid, and S. A Abdul Kadir (2008).
DOI: 10.1007/bf03325997
Google Scholar
[11]
Assael, M., & Kakosimos, K. (2010). Fires, Explosions And Toxic Gas Dispersions- Effects Calculation and Risk Analysis. Boca Raton, FL: Taylor and Francis Group, LLC.
DOI: 10.1201/9781439826768
Google Scholar
[12]
Baker, Q., Doolittle, C., Fitzgerald, G., & Tang, M. J. (1998). Recent Developments In The Baker-Strehlow Vce Analysis Methodology. Process Safety Progress, 297-301.
DOI: 10.1002/prs.680170411
Google Scholar
[13]
Baker, Q., Tang, M. J., Scheier, E., & Silva, G. (1996). Vapor Cloud Explosion Analysis. Process Safety Progress, 106-109.
DOI: 10.1002/prs.680150211
Google Scholar
[14]
Berg, A. (2009). 'BLAST',: A compilation of codes for the numerical simulation of the gas dynamics of explosions. Journal of Loss Prevention in the Process Industries , 271–278.
DOI: 10.1016/j.jlp.2008.07.004
Google Scholar
[15]
French Ministry of the Environment - DPPR / SEI / BARPI – CFBP. (2008, February). BLEVE in an LPG storage Facility at a refinery January 4, 1966 Feyzin (Rhône) France.
Google Scholar
[16]
Lisia, R., Consolob, G., Maschioc, G., & Milazzo, M. F. (2014). Domino Effects Due to the Projection of Fragments: Estimation of the Impact Probability Using a Monte Carlo Simulation. Chemical Engineering Transactions, 361-366.
Google Scholar
[17]
Wingerden, K. v., Bjerketvedt, D., & Bakke, J. R. (1999). Detonations in pipes and in the open. Bergen, Norway: Christian Michelsen Research.
Google Scholar
[18]
Wingerden, K. v., Hansen , O. R., & Foisselon, P. (1999). Predicting Blast Overpressures Caused by Vapor Cloud Explosions in the Vicinity of Control Rooms. Process Safety Progress, 17-24.
DOI: 10.1002/prs.680180105
Google Scholar
[19]
Pape, R., Mniszewski, K., & Longinow, A. (2010). Explosion Phenomena and Effects of Explosions on Structures. II: Methods of Analysis (Explosion Effects). Practice Periodical On Structural Design And Construction (pp.141-152). Illinois: ASCE.
DOI: 10.1061/(asce)sc.1943-5576.0000039
Google Scholar
[20]
Nolan , D. (2010). Handbook of Fire and Explosion Protection Engineering Principles: for Oil . Technology & Engineering.
Google Scholar
[21]
Tang, M., & Baker, Q. (2000). Comparison of blast curves from vapor cloud explosions. Journal of Loss Prevention in the Process Industries 13 , 433–438.
DOI: 10.1016/s0950-4230(99)00040-6
Google Scholar
[22]
Török, Z., & Ozunu, A. (2010). Chemical risk assessment for storage of. Advances in Environmental Sciences - International Journal of the Bioflux Society hazardous materials in the context of Land Use Planning, 33-56.
Google Scholar
[23]
J. A. Davenport (1992). A Survey of Vapor Cloud Explosions—Second Update. 26th Loss Prevention Symposium. March 30-April 2, American Institute of Chemical Engineers. New York.
Google Scholar
[24]
Clancey, V. J. (1972). Diagnostic Features of Explosion Damage., 6tb International Meeting on forensic Sciences. Edinburgh, Scotland.
Google Scholar
[25]
Wiekema, B. J. (1979). Vapor Cloud Explosions. Methods for the Calculation of the Physical Effects of the Escape of Dangerous Materials: Liquids and Gases, TNO.
Google Scholar