Effect of Solvent Evaporation Time on CO2/CH4 Gas Performance for Poly(Lactic) Acid Membranes

Article Preview

Abstract:

Membrane technology in gas separation application was commercialized approximately 30 years ago because of a number of advantages offered compare to the conventional technique. The use of poly (lactic acid) (PLA), a biodegradable polymer, as a membrane material would assist the reduction of depending to petroleum-based polymer. This study investigated the effect of evaporation time to the gas separation performance of PLA membrane. Membrane prepared from polymer solution consist of PLA and dicholoremethane (DCM) as solvent was fabricated using pneumatically controlled casting system with dry/wet phase inversion method. Permeation test was conducted using pure carbon dioxide and methane gas. The results revealed that as the evaporation time increased, the pore size and surface porosity decreased, while the skin layer thickness increased. Although the morphology of the prepared membranes showed the desirable structure, the gas separation performance of the membrane prepared with polymer concentration of 15wt% and 60s evaporation time was found to be promising but not yet commercially ready.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

660-666

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. M. Robeson, Polymer membranes for gas separation, Solid State Mater. Sci. 4(1999) 549–552.

Google Scholar

[2] I. G. Wenten, Recent development in membrane science and its industrial applications, J. Sci. Technol. 24(2003) 1009–1024.

Google Scholar

[3] R. Abedini and A. Nezhadmoghadam, Application of membrane in gas separation process : its suitability and mechanisms, Pet. Coal. 52(2010) 69–80.

Google Scholar

[4] R. Baker, Membrane technology and applications, second ed., McGraw-Hill California:, (2004).

Google Scholar

[5] A. Mushtaq, H. Bin Mukhtar, A. M. Shariff, and H. A. Mannan, A review : development of polymeric blend membrane for removal of CO2 from natural gas, Int. J. Eng. Technol., 13(2013) 53–60.

Google Scholar

[6] T. D. Kusworo, A. F. Ismail, A. Mustafa, and T. Matsuura, Dependence of membrane morphology and performance on preparation conditions : The shear rate effect in membrane casting, Sep. Purif. Technol., 61(2008) 249–257.

DOI: 10.1016/j.seppur.2007.10.017

Google Scholar

[7] H. Hasbullah, N. Be, and N. Ibrahim, Mindel S-1000 based asymmetric membranes for O2 / N2 separation : effect of polymer concentration. 32(2013) 2035–(2040).

Google Scholar

[8] W. J. Koros and R. Mahajan, Pushing the limits on possibilities for large scale gas separation : which strategies ?, J. Memb. Sci., 175(2000) 181–196.

DOI: 10.1016/s0376-7388(00)00418-x

Google Scholar

[9] A. F. Ismail, R. Norida, W. A. W. A. Rahman, T. Matsuura, and S. A. Hashemifard, Preparation and characterization of hyperthin-skinned and high performances asymmetric polyethersulfone membrane for gas separation, Desalination, 273(2011) 93–104.

DOI: 10.1016/j.desal.2010.10.015

Google Scholar

[10] H. Kawakami, M. Mikawa, and S. Nagaoka, Formation of surface skin layer of asymmetric polyimide membranes and their gas transport properties, J. Memb. Sci., 37(1997) 241–250.

DOI: 10.1016/s0376-7388(97)00198-1

Google Scholar

[11] L. Wan Jin, K. Duek San, and K. Jin Hwan, Preparation and Gas Separation Properties of Asymmetric Polysulfone Membranes by a Dual Bath Method, Korean J. Chem. Eng., 17(2000) 143–148.

DOI: 10.1007/bf02707135

Google Scholar

[12] A. Moriya, T. Maruyama, Y. Ohmukai, T. Sotani, and H. Matsuyama, Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods, J. Memb. Sci., 342(2009) 307–312.

DOI: 10.1016/j.memsci.2009.07.005

Google Scholar

[13] R. A. Auras, B. Harte, S. Selke, and R. Hernandez, Mechanical, physical, and barrier properties of pla films, J. Plast. Film Sheeting, 19(2003) 123–135.

DOI: 10.1177/8756087903039702

Google Scholar

[14] A. K. Hołda, B. Aernouts, W. Saeys, and I. F. J. Vankelecom, Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes, J. Memb. Sci., 442(2013) 196–205.

DOI: 10.1016/j.memsci.2013.04.017

Google Scholar

[15] L. Xiao, B. Wang, G. Yang, and M. Gauthier, Poly(Lactic Acid)-based Biomaterials : synthesis , modification and applications, in Biomedical Science, Engineering and Technology, D. N. Ghista (Ed. ), InTech Europe, 2006, p.247–282.

DOI: 10.5772/23927

Google Scholar

[16] L. Bao, J. R. Dorgan, D. Knauss, S. Hait, N. S. Oliveira, and I. M. Maruccho, Gas permeation properties of poly ( lactic acid ) revisited, J. Memb. Sci., 285(2006) 166–172.

DOI: 10.1016/j.memsci.2006.08.021

Google Scholar

[17] A. F. Ismail, B. C. Ng, and W. A. . Abdul Rahman, Effects of shear rate and forced convection residence time on asymmetric polysulfone membranes structure and gas separation performance, Sep. Purif. Technol., 33(2003) 255–272.

DOI: 10.1016/s1383-5866(03)00009-1

Google Scholar

[18] M. A. Aroon, A. F. Ismail, M. M. Montazer-Rahmati, and T. Matsuura, Morphology and permeation properties of polysulfone membranes for gas separation: Effects of non-solvent additives and co-solvent, Sep. Purif. Technol., 72(2010) 194–202.

DOI: 10.1016/j.seppur.2010.02.009

Google Scholar

[19] M. Iqbal, Z. Man, H. Mukhtar, and B. K. Dutta, Solvent effect on morphology and CO2/CH4 separation performance of asymmetric polycarbonate membranes, J. Memb. Sci., 318(2008) 167–175.

DOI: 10.1016/j.memsci.2008.02.040

Google Scholar

[20] T. D. Kusworo, A. Wibowo, G. D. Harjanto, A. D. Yudisthira, and F. B. Iswanto, Cellulose acetate membrane with improved perm-selectivity through modification dope composition and solvent evaporation for water softening, J. Appl. Sci. Eng. Technol., 7, (2014).

DOI: 10.19026/rjaset.7.742

Google Scholar

[21] A. F. Ismail and P. Y. Lai, Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation, Sep. Purif. Technol., 33(2003) 127–143.

DOI: 10.1016/s1383-5866(02)00201-0

Google Scholar

[22] A. F. Ismail and W. Lorna, Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane, Sep. Purif. Technol., 27(2002) 173–194.

DOI: 10.1016/s1383-5866(01)00211-8

Google Scholar

[23] B. T.D. Kusworo, A.F. Ismail, A. Mustafa, Studies of thermal annealing on suppression of plasticization of the asymmetric hollow fiber mixed matrix membranes, World Appl. Sci. J., 28(2013) 9–19.

Google Scholar