[1]
K. Fadzilah and M. D. Mashitah, Cellulases Production in Palm Oil Mill Effluent: Effect of Aeration and Agitation, Journal of Applied Sciences. 10 (24) (2010) 3307 – 3312.
DOI: 10.3923/jas.2010.3307.3312
Google Scholar
[2]
L. Appels, J. Lauwers, J. Degrève, L. Helsen, B. Lievens and K. Willems, Anaerobic digestion in global bio-energy production: Potential and research challenges, Renewable and Sustainable Energy Reviews. 15 (2011) 4295-4301.
DOI: 10.1016/j.rser.2011.07.121
Google Scholar
[3]
T. Y. Wu, A. W. Mohammad, J. M. Jahim, and N. Anuar, A holistic approach to managing palm oil mill effluent (POME): Biotechnological advances in the sustainable reuse of POME, Biotechnology Advances. 27 (2009) 40-52.
DOI: 10.1016/j.biotechadv.2008.08.005
Google Scholar
[4]
N. Saifuddin and S. Fazlili. Effect of Microwave and Ultrasonic Pretreatments on Biogas Production from Anaerobic Digestion of Palm Oil Mill Effleunt, American J. of Engineering and Applied Sciences. 2(1) (2009) 139-146.
DOI: 10.3844/ajeas.2009.139.146
Google Scholar
[5]
E. P. Leano, A. J. Anceno, and S. Babel, Ultrasonic pretreatment of palm oil mill effluent: Impact on biohydrogen production, bioelectricity generation, and underlying microbial communities, International Journal of Hydrogen Energy. 37 (2012).
DOI: 10.1016/j.ijhydene.2012.06.007
Google Scholar
[6]
S. R. Rahman, K. H. Ku Hamid, R. Alias, and M. Musa, Effect of ultrasonic and sonothermal treatment on weight reduction and particles size distribution of raw Palm Oil Mill Effluent (POME). Applied Mechanical and Materials. 575 (2014) 180-184.
DOI: 10.4028/www.scientific.net/amm.575.180
Google Scholar
[7]
S. Merouani, O. Hamdaoui, Y. Rezgui, and M. Guemini, Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles, Ultrasonics Sonochemistry. 21 (2014) 53-59.
DOI: 10.1016/j.ultsonch.2013.05.008
Google Scholar
[8]
K. S. Suslick and Kirk-Othmer, Encyclopedia of Chemical Technology, 4th edition, J. Wiley & Sons., New York, (1998).
Google Scholar
[9]
C. Gong and D. P. Hart, Ultrasound Induced Cavitation and Sonochemical Yield', Journal of the Acoustical Society of America. 104 (1998) 1-16.
Google Scholar
[10]
M. N. Patil and A. B. Pandit, Cavitation - a Novel Technique for Making Stable Nanosuspensions, Ultrasonics Sonochemistry. 14, (2007). p.519 – 530.
DOI: 10.1016/j.ultsonch.2006.10.007
Google Scholar
[11]
W. Xie, Y. Qin, D. Liang, D. Song and D. He, Degradation of m-xylene solution using ultrasonic irradiation, Ultrasonics Sonochemistry. 18 (2011) 1077-1081.
DOI: 10.1016/j.ultsonch.2011.03.014
Google Scholar
[12]
S. Koda, K. Taguchi, and K. Futamura, Effects of frequency and a radical scavenger on ultrasonic degradation of water-soluble polymers, Ultrasonics Sonochemistry. 18 (2011) 276-281.
DOI: 10.1016/j.ultsonch.2010.06.007
Google Scholar
[13]
X. Wu, E. M. Joyce, and T. J. Mason, Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies, Water Research. 46 (2012). 2851-2858.
DOI: 10.1016/j.watres.2012.02.019
Google Scholar
[14]
E. Villaroel, J. Silva-Agredo, C. Petrier, G. Taborda, and R. A. Torres-Palma, Ultrasonic degradation of acetaminophen in water: Effect of sonochemical parameters and water matrix, Ultrasonics Sonochemistry. 21 (2014). 1763-1769.
DOI: 10.1016/j.ultsonch.2014.04.002
Google Scholar
[15]
D. Kirpalani and K. Suzuki, Ethanol enrichment from ethanol–water mixtures using high frequency ultrasonic atomization, Ultrasonics Sonochemistry. 18 (2011) 1012-1017.
DOI: 10.1016/j.ultsonch.2010.05.013
Google Scholar