A Review on Empirical Modelling of CO2 Solubility in Absorption Process

Article Preview

Abstract:

Carbon dioxide (CO2) is a major greenhouse gas that contributes to the global warming due to rise in temperature of the earth's atmosphere. Industrial activities such as fossil fuel combustion and production of several chemicals become one of the major contributors to CO2 emissions. This issue can be solved by providing improved technology to mitigate the carbon dioxide emissions. Absorption of CO2 in aqueous solution has been used extensively and has been proven to be the most applicable technology for CO2 capture. The effectiveness of absorption process is strongly depending on its hydrodynamic and mass transfer characteristics. Development of model is required to predict the behavior of the CO2 absorption process for reliable design and operation. In this paper, a review of the empirical models that have been implemented in CO2 absorption over a last decade is presented. The details of each model are discussed and compared.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

697-702

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yu C. H., Huang, C. H. and Tan, C. S. (2012) A Review of CO2 Capture by Absorption and Adsorption. Aerosol and Air Quality Research, 12: 745–769.

DOI: 10.4209/aaqr.2012.05.0132

Google Scholar

[2] Albo, A., Luis, P. and Irabin, A. (2010) Carbon Dioxide Capture from Flue Gases Using a Cross-Flow Membrane Contactor and the Ionic Liquid 1-Ethyl-3- methylimidazolium Ethylsulfate. Ind. Eng. Chem. Res. 49: 11045–11051.

DOI: 10.1021/ie1014266

Google Scholar

[3] Md. Dali A., Ibrahem A. S, and Hadi, A. (2012) General study about activated carbon for adsorption carbon dioxide. Journal of Purity, Utility Reaction and Environment. 1, 5, 236-251.

Google Scholar

[4] Hongqun Yang, Zhenghe Xu, Maohong Fan, Rajender Gupta, Rachid B Slimane, Alan E Bland and Ian Wright (2008). Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 20, 14–27.

DOI: 10.1016/s1001-0742(08)60002-9

Google Scholar

[5] IPCC (2005). Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage. Cambridge University press, Cambridge, UK.

Google Scholar

[6] Wang, M., Lawal, A., Stephenson, P., Sidders, J., & Ramshaw, C., (2011). Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chemical Engineering Research and Design. 89 (2011) 1609-162.

DOI: 10.1016/j.cherd.2010.11.005

Google Scholar

[7] Sung-Youl Park, Byoung-Moo Min, Jong-Sup Lee, Sung-Chan Nam, Keun-Hee Han and Ju-Soo Hyun (2004) Absorption Characteristic of Continuous CO2 Absorption Process. Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem. 49 (1), 250.

Google Scholar

[8] Eikens B., Karim M.N. and Simon L. (2001).

Google Scholar

[9] Madani, K. (2006) Industrial and real world application of artificial neural networks. Illuision or reality? In: Braz, J., Aroujo, H., Vieira Alves and Encomacao, B., Informatics in Control Automation and Robotic I. Pg 14.

Google Scholar

[10] Daneshvar, N., Moattar, M.T.Z., Abdi, M-A., and Aber, S., (2004).

Google Scholar

[11] Mariana, Sumida, K., Satake, T., Maezawa, A., Takeshita, T. & Uchida, S (2004).

Google Scholar

[12] Wiheeb, A.D., Shehab M.A., & Salih M.I. (2008) Estimating of CO2 Conversion in Falling Film Reactor Using Artificial Neural Network , Diyala Journal of Engineering Sciences, 01(01), 86-100.

DOI: 10.24237/djes.2008.01106

Google Scholar

[13] D. Bastani, D., Hamzehie, M. E, Davardoost, F., Mazinani, S. And Poorbashiri, A. (2013) Prediction of CO2 loading capacity of chemical absorbents using a multi-layer perceptron neural network. Fluid Phase Equilibria, 354, Pages 6–11.

DOI: 10.1016/j.fluid.2013.05.017

Google Scholar

[14] Fu, K., Chen, G., Sema, T., Zhang, X., Liang, Z. , Idem, R., Tontiwachwuthikul, P. (2013).

Google Scholar

[15] Sipöcz, N. , Tobiesen, F.A. , Assadi, M. (2011)   The Use Of Artificial Neural Network Models For CO2 Capture Plants . Applied Energy, 88, 7, Pg 2368-2376.

DOI: 10.1016/j.apenergy.2011.01.013

Google Scholar

[16] Shahsavand, A., Derakhshan, F. And Sotoudeh, F., (2011). Application of artificial neural networks for simulation of experimental CO2 absorption data in a packed column. Journal of Natural Gas Science and Engineering 3 (2011) 518-529.

DOI: 10.1016/j.jngse.2011.05.001

Google Scholar

[17] Fu, K., Chen, G., Liang, Z. , Sema, T., Idem, R., Tontiwachwuthikul, P. (2014).

Google Scholar

[18] Ghiasi, M.M. , Mohammadi, A. H (2014). Rigorous Modeling of CO2 Equilibrium Absorption In Mea, Dea, And Tea Aqueous Solutions. Journal of Natural Gas Science And Engineering, Volume 18, May 2014, Pages 39-46.

DOI: 10.1016/j.jngse.2014.01.005

Google Scholar

[19] Van Eckeveld, A.C. , Van Der Ham, L.V., Geers, L.F.G., Van Den Broeke, L.J.P., Boersma, B.J., Goetheer, E.L.V.  (2014).

Google Scholar