Aspen Plus Simulation of Ultrasound Assisted Distillation for Separating Azeotropic Mixture

Article Preview

Abstract:

Earlier works have proved the potentials of altering the vapor liquid equilibrium of azeotropic mixture by sonication phenomena. In this work a mathematical model of a single stage vapor-liquid equilibrium system developed in Aspen Custom Modeler is exported to Aspen Plus to represent one stage of ultrasonic flash distillation (USF). The USF modules are connected serially to mimic a distillation process. As a case study, the separation of ethanol-ethyl acetate mixture is considered. The final targeted composition of 99 mole % of ethyl acetate was achieved when 27 USF modules were used despite the fact that the mixture form azeotrope at 55 mole % ethyl acetate. The results reinforced the anticipated potentials of sonication phenomena in intensifying distillation process to overcome azeotropes, and provide useful insights for the development of a pilot-scaled facility that is currently under development.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

710-714

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Mahdi, A. Ahmad, A. Ripin, M.M. Nasef, State of the Art Technologies for Separation of Azeotropic Mixtures: A Review. Sep. Purif. Rev. 44 (2015) 308–330.

DOI: 10.1080/15422119.2014.963607

Google Scholar

[2] P. R. Gogate, Cavitational reactors for process intensification of chemical processing applications: A critical review, Chem. Eng. Proc.: Proc. Inten. 47 (2008) 515-527.

DOI: 10.1016/j.cep.2007.09.014

Google Scholar

[3] W. T. Cross, C. Ramshaw, Process intensification: laminar flow heat transfer, Chem. Engine. Res. Des. 64. 4 (1986) 293-301.

Google Scholar

[4] A. Ripin, S. K. Abdul Mudalip, Z. Sukaimi, R. M. Yunus and Z. A. 
Manan, Sep. Sci. Technol., 44, 2707 (2009).

Google Scholar

[5] T. Mahdi, A. Ahmad, A. Ripin, M. M. Nasef, Vapor-Liquid Equilibrium of Ethanol/Ethyl Acetate Mixture in Ultrasonic Intensified Environment, J. Kor. Chem. Eng. 31 (2014) 875-880.

DOI: 10.1007/s11814-014-0011-9

Google Scholar

[6] C. Zhang, H. Wan, L. Xue, G. Guan, Investigation on isobaric vapor liquid equilibrium for acetic acid + water + (n-propyl acetate oriso-butyl acetate), Fluid Phase Equil. 305. 1 (2011) 68-75.

DOI: 10.1016/j.fluid.2011.03.006

Google Scholar

[7] A. Londo, M. T. G. Jongmans, B. Schuur and A. de Haanb, Isobaric low pressure vapor–liquid equilibrium data for the binary system monochloro acetic acid + dichloroacetic acid, Fluid Phase Equil. 313 (2012) 97– 101.

DOI: 10.1016/j.fluid.2011.09.020

Google Scholar

[8] T. Mahdi, A. Ahmad, A. Ripin, M. M. Nasef, Modeling of Ultrasonic Enhancement of Separation Azeotropic Mixtures via Single Distillation Column. Ultras. Sonochem. (2014), (article in press). http: /dx. doi. org/10. 1016/j. ultsonch. 2014. 11. 005.

DOI: 10.4028/www.scientific.net/amr.909.83

Google Scholar

[9] E. Santacesaria, G. Carotenuto, R. Tesser, M. Di Serio. Ethanol dehydrogenation to ethyl acetate by using copper and copper chromite catalysts, Chem. Engin. J. 179 (2012) 209– 220.

DOI: 10.1016/j.cej.2011.10.043

Google Scholar

[10] H. Renon, J. M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE. 14 (1968) 135–144.

DOI: 10.1002/aic.690140124

Google Scholar

[11] P. R. S. Katikaneni, M. Cheryan, Purification of Fermentation-Derived Acetic Acid by Liquid-Liquid Extraction and Esterification, Ind. Eng. Chem. Res. 41 (2002) 2745-2752.

DOI: 10.1021/ie010825x

Google Scholar