[1]
R. Awang, S. Ahmad and Kang, Y.B., Malaysian Patent PI 9, 804, 456. (1998).
Google Scholar
[2]
S. Ahmad, Soi, S.H., M. N. Sattar, Y. A. Yusof, H. Abu Hassan and R. Awang, U. S. Patent Application Publication US 2005/ 0240041 A1. (2005).
Google Scholar
[3]
H. Rabitz, K.W. Moore, A. Pechen, Feng, X.J., J. Dominy, V. Beltrani, Universal Characteristics of Chem. Synthesis & Property Optimization. Chem. Sci. 2 (2011), 417-424.
DOI: 10.1039/c0sc00425a
Google Scholar
[4]
W.H. Moos, M.R. Pavia, A.D. Ellington, B.K. Kay, Annual Reports in Combinatorial Chem. and Molecular Diversity (Volume 1), ESCOM Science Publishers B. V, The Netherlands, (1997).
DOI: 10.1007/978-0-306-46904-6
Google Scholar
[5]
D.C. Montgomery, Design and Analysis of Experiments (7th Ed. ), John Wiley & Sons Inc., New Jersey, (2009).
Google Scholar
[6]
R.K. Roy, Design of Experiments using the Taguchi Approach: 16 Steps to Product and Process Improvement, John Wiley & Sons Inc, New York, (2001).
Google Scholar
[7]
M. Anderson, Design of Experiments. The Industrial Physicist, (1997), 24-26.
Google Scholar
[8]
R.A. Stone, A. Veevers, The Taguchi Influence on Designed Experiments. Journal of Chemometrics 8 (1994), 103-110.
DOI: 10.1002/cem.1180080203
Google Scholar
[9]
Houng, J. Y., Liao, J. H., Wu, J. T., Shen, S. C., Hsu, H. F., Enhancement of Asymmetric bioreduction of Ethyl 4-chloroacetoacetate by the Design of Composition of Culture Medium and Reaction Conditions. Process Biochem, 42 (2006), 1-7.
DOI: 10.1016/j.procbio.2006.03.035
Google Scholar
[10]
Kim, S. T., Yim, B. B., Park, Y. T., Application of Taguchi Experimental Design for the Optimization of Effective Parameters on the Rapeseed Methyl Ester Production. Environmental Engineering Research, 15(3) (2010), 129-134.
DOI: 10.4491/eer.2010.15.3.129
Google Scholar
[11]
A. Kassim, H.R.F. Masoumi, M. Basri, Z.K. Abdullah, Determining Optimum Conditions for Lipase-Catalyzed Synthesis of Triethanolamine (TEA)-Based Esterquat Cationic Surfactant by a Taguchi Robust Design Method. Molecules, 16 (2011), 4672-4680.
DOI: 10.3390/molecules16064672
Google Scholar
[12]
S. Chongkhong, C. Tongurai, P. Chetpattananondh, C. Bunyakan, Biodiesel Production by Esterification of Palm Fatty Acid Distillate. Biomass & Bioenergy doi: 10. 1016 j. biombioe. 2007. 03. 001 (2007).
DOI: 10.1016/j.biombioe.2007.03.001
Google Scholar
[13]
Z. Yaakob, A.G. Jaharah, S.K. Kamaruddin, W.R.W. Daud, Lim, K. L, The Effect of Catalyst Metal Loading and Temperature on the Reduction of Carbon Monoxide Concentration in Hydrogen Production by Steam Reforming of Methanol (SRM). European Journal of Scientific Research 26(2) (2009).
Google Scholar
[14]
S.K. Jamaludin, Continuous In Situ Epoxidation-Dihydroxylation of Palm Kernel Oil-Based Oleic Acid to Produce Crude Dihydroxystearic Acid (Unpublished Masters Thesis), Universiti Teknologi MARA, Malaysia, (2012).
DOI: 10.23939/chcht12.03.296
Google Scholar
[15]
Tentative Method of Oxirane Oxygen: AOCS Cd 9-57, American Oil Chemists' Society (AOCS), Urbana, Illinois, (1963).
Google Scholar
[16]
G. Taguchi, S. Chowdhury, Wu, Y., Taguchi's Quality Engineering Handbook, John Wiley & Sons Inc., New Jersey, (2005).
Google Scholar
[17]
J. Hagen, Industrial Catalysis: A Practical Approach, Wiley-VCH, Germany, (2006).
Google Scholar
[18]
Information on http: /webbook. nist. gov.
Google Scholar
[19]
N.L. Frigon, D. Mathews, Practical Guide to Experimental Design, John Wiley & Sons Inc., New York, (1979).
Google Scholar