Experimental Field Study of Green Tower Setup

Article Preview

Abstract:

A Green Tower for setup a pilot experiment consists of the solar collector and the tower was built. The temperature distribution of the Green Tower was measured and analyzed. The data of the highest experimental temperature inside the Green Tower collector’s reached was 52oC at 1300 hours at solar irradiation received of 623W/m2 respectively, with the ambient temperature at 31 oC. The Green Tower that used solar thermal power and utilizing a combination of solar air collector using the principal of solar oven and central updraft tube to generate a solar induced convective flow, which drives pressure to develop artificial wind. This paper presents the experimental field study and practical experience of the Green Tower. The discussion on temperature distribution and also updraft wind of the Green Tower is described and then the results from the designing, building and experimental are presented. The results and suggestions for the future reference will also be discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

782-788

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ayu Wazira Azhari, Kamaruzzaman Sopian, Azami Zaharim, Mohamad Al Ghoul (2008). A New Approach For Predicting Solar Radiation In Tropical Environment Using Satellite Images – Case Study Of Malaysia., Environment and Development 4: 373–378.

Google Scholar

[2] Clever Ketlogetswe, Jerzy K. Fiszdon, Omphemetse O. Seabe (2008). Solar chimney power generation project—The case for Botswana., Renewable and Sustainable Energy Reviews 12: 2005–(2012).

DOI: 10.1016/j.rser.2007.03.009

Google Scholar

[3] Clito Afonso, Armando Oliveira (2000). Solar chimneys: simulation and experiment., Energy and Buildings 32: 71–79.

DOI: 10.1016/s0378-7788(99)00038-9

Google Scholar

[4] Günther, Hanns (1931). In hundert Jahren — Die künftige Energieversorgung der Welt. (In a hundred years - the future energy supply in the world. ). Stuttgart: Kosmos.

Google Scholar

[5] Jörg Schlaich, Rudolf Bergermann, Wolfgang Schiel, Gerhard Weinrebe (2005).

DOI: 10.1002/best.200590243

Google Scholar

[6] S. Nizetic, B. Klarin (2010). A simplified analytical approach for evaluation of the optimal ratio of pressure drop across the turbine in solar chimney power plants., Applied Energy 87: 587–591.

DOI: 10.1016/j.apenergy.2009.05.019

Google Scholar

[7] S. Nizetic, N. Ninic, B. Klarin (2008). Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region., Energy 33: 1680– 1690.

DOI: 10.1016/j.energy.2008.05.012

Google Scholar

[8] Salah Larbi, Amor Bouhdjar, Toufik Chergui (2010). Performance analysis of a solar chimney power plant in the southwestern region of Algeria., Renewable and Sustainable Energy Reviews 14: 470–477.

DOI: 10.1016/j.rser.2009.07.031

Google Scholar

[9] T.P. Fluri, T.W. von Backstrom (2008). Comparison of modelling approaches and layouts for solar chimney turbines., Solar Energy 82: 239–246.

DOI: 10.1016/j.solener.2007.07.006

Google Scholar

[10] Theodor W. von Backstrom, Thomas P. Fluri (2006). Maximum fluid power condition in solar chimney power plants – An analytical approach., Solar Energy 80: 1417–1423.

DOI: 10.1016/j.solener.2006.04.001

Google Scholar

[11] Tingzhen Ming, Wei Liu, Yuan Pan, Guoliang Xu (2008). Numerical analysis of flow and heat transfer characteristics in solar chimney power plants with energy storage layer., Energy Conversion and Management 49: 2872–2879.

DOI: 10.1016/j.enconman.2008.03.004

Google Scholar

[12] Xinping Zhou, Bo Xiao, Wanchao Liu, Xianjun Guo, Jiakuan Yang, Jian Fan (2010). Comparison of classical solar chimney power system and combined solar chimney system for power generation and seawater desalination., Desalination 250: 249–256.

DOI: 10.1016/j.desal.2009.03.007

Google Scholar

[13] Xinping Zhou, Jiakuan Yang, Bo Xiao, Guoxiang Hou (2007). Experimental study of temperature field in a solar chimney power setup., Applied Thermal Engineering 27: 2044–(2050).

DOI: 10.1016/j.applthermaleng.2006.12.007

Google Scholar

[14] Xinping Zhou, Jiakuan Yang, Bo Xiao, Guoxiang Hou (2007). Simulation of a pilot solar chimney thermal power generating equipment., Renewable Energy 32: 1637–1644.

DOI: 10.1016/j.renene.2006.07.008

Google Scholar

[15] Xinping Zhou, Jiakuan Yang, Bo Xiao, Guoxiang Hou, Fang Xing (2009). Analysis of chimney height for solar chimney power plant., Applied Thermal Engineering 29: 178–185.

DOI: 10.1016/j.applthermaleng.2008.02.014

Google Scholar

[16] Xinping Zhou, Jiakuan Yang, Fen Wang, Bo Xiao (2009). Economic analysis of power generation from floating solar chimney power plant., Renewable and Sustainable Energy Reviews 13: 736–749.

DOI: 10.1016/j.rser.2008.02.011

Google Scholar

[17] Xinping Zhou, Jiakuan Yang, Reccab M. Ochieng, Xiangmei Li, Bo Xiao (2009). Numerical investigation of a plume from a power generating solar chimney in an atmospheric cross flow., Atmospheric Research 91: 26–35.

DOI: 10.1016/j.atmosres.2008.05.003

Google Scholar

[18] Zainoor Hailmee Solihin, Noriah Yusof, Wan Sulaiman (2010).

Google Scholar

[19] Zainoor Hailmee Solihin, Wirachman Wisnoe, Noriah Yusoff, Wan Sulaiman Wan Mohammad (2013). Theoretical and Experimental Analysis of Double Layer Quintuple Solar Oven., Applied Mechanics and Materials 393: 759-766.

DOI: 10.4028/www.scientific.net/amm.393.759

Google Scholar