[1]
M. Höök and X. Tang, Depletion of fossil fuels and anthropogenic climate change—A review, Energy Policy. 52 (2013) 797-809.
DOI: 10.1016/j.enpol.2012.10.046
Google Scholar
[2]
A. Demirbaş, Sustainable cofiring of biomass with coal, Ener Conver and Management. 44(2003)1465-1479.
DOI: 10.1016/s0196-8904(02)00144-9
Google Scholar
[3]
B. D. Bals and B. E. Dale, Developing a model for assessing biomass processing technologies within a local biomass processing depot, Bioresour. Technol. 106(2012) 161-169.
DOI: 10.1016/j.biortech.2011.12.024
Google Scholar
[4]
N. Abdullah and H. Gerhauser, Bio-oil derived from empty fruit bunches, Fuel. 87(2008) 2606-2613.
DOI: 10.1016/j.fuel.2008.02.011
Google Scholar
[5]
P. C. Badger and P. Fransham, Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs—A preliminary assessment, Biomass and Bioener. 30 (2006) 321-325.
DOI: 10.1016/j.biombioe.2005.07.011
Google Scholar
[6]
L. Li, X. Yin, C. Wu, L. Ma, and Z. Zhaoqiu, Kinetic Studies On The Pyrolysis and Combustion of Bio-oil, in ISES Solar World Congress 2007: Solar Energy and Human Settlement, (2007).
DOI: 10.1007/978-3-540-75997-3_483
Google Scholar
[7]
H. Hamdan, M. Z. Sharuddin, A. R. M. Daud, and S. S. A. Syed-Hassan, Thermal Behaviour of Slurry Prepared from Clermont Bituminous Coal and Oil Palm Empty Fruit Bunch Bio-Oil, Advanced Materials Research. 906 (2014) 153-158.
DOI: 10.4028/www.scientific.net/amr.906.153
Google Scholar
[8]
X. Ren, J. Meng, A. M. Moore, J. Chang, J. Gou, and S. Park, Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils, Bioresour Technol. 152 (2014) 267-274.
DOI: 10.1016/j.biortech.2013.11.028
Google Scholar
[9]
D. R. McIlveen-Wright, Y. Huang, S. Rezvani, and Y. Wang, A technical and environmental analysis of co-combustion of coal and biomass in fluidised bed technologies, Fuel. 86(2007) 2032-(2042).
DOI: 10.1016/j.fuel.2007.02.011
Google Scholar
[10]
M. V. Gil, D. Casal, C. Pevida, J. J. Pis, and F. Rubiera, Thermal behaviour and kinetics of coal/biomass blends during co-combustion, Bioresour. Technol. 101(2010) 5601-5608.
DOI: 10.1016/j.biortech.2010.02.008
Google Scholar
[11]
H. Haykiri-Acma and S. Yaman, Effect of co-combustion on the burnout of lignite/biomass blends: A Turkish case study, Waste Management. 28(2008) 2077-(2084).
DOI: 10.1016/j.wasman.2007.08.028
Google Scholar
[12]
S. Liu, M. Chen, Q. Hu, J. Wang, and L. Kong, The kinetics model and pyrolysis behavior of the aqueous fraction of bio-oil, Bioresour Technol. 129(2013) 381-386.
DOI: 10.1016/j.biortech.2012.11.006
Google Scholar
[13]
K. M. Isa, S. Daud, N. Hamidin, K. Ismail, S. A. Saad, and F. H. Kasim, Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM), Indust Crops and Prod. 33(2011).
DOI: 10.1016/j.indcrop.2010.10.024
Google Scholar
[14]
M. Otero, X. Gómez, A. I. García, and A. Morán, Effects of sewage sludge blending on the coal combustion: A thermogravimetric assessment, Chemosphere. 69 (2007) 1740-1750.
DOI: 10.1016/j.chemosphere.2007.05.077
Google Scholar
[15]
M. Varol, A. T. Atimtay, B. Bay, and H. Olgun, Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis, Thermoch Acta. 510(2010)195-201.
DOI: 10.1016/j.tca.2010.07.014
Google Scholar
[16]
M. L. Kubacki, A. B. Ross, J. M. Jones, and A. Williams, Small-scale co-utilisation of coal and biomass, Fuel. 101(2012) 84-89.
DOI: 10.1016/j.fuel.2011.06.034
Google Scholar
[17]
M. A. Jamaluddin, K. Ismail, Z. A. Ghani, M. A. M. Ishak, S. S. Idris, M. F. Abdullah, et al., Thermogravimetric Analysis of Silantek Coal, Palm Kernel Shell, Palm Kernel Shell Char and their Blends during Combustion, in 2011 3rd Symposium & Exhibition in Sustainable Energy & Environment, Melaka Malaysia.
DOI: 10.1109/isesee.2011.5977108
Google Scholar