The SmCo5 Intermetallic Compound Sintering

Article Preview

Abstract:

The SmCo5 has three sintering stages using spheres (0.6 – 1.0 mm diameter) at temperatures between 1030 and 1200 °C. During the first stage the neck radius increases as X2 ~ t for less than 1200 °C temperature, the exponent is 3 at 1200 °C. Interdiffusion is sintering mechanism for exponent of 2. Sm diffuses from inside to the surface, where it is oxidized and oxides fills the neck between the spheres. Co diffuses through the oxides. At 1200 °C the sintering mechanism is evaporation-condensation of Sm. The activation enthalpy of the first stage is 582 kJmol-1 for temperatures above 1130 °C and 210 kJmol-1 bellow 1130 °C, respectively. The second stage is characterized by a plateau where the neck growth is arrested. The small pores in the neck and in the sphere surface layer (formed during the first stage) shrink. When these pores disappear a continuous α-Co layer forms and the third stage starts. It is essential growth of the neck formed by dense Co layer. The law of sintering is X4 ~ t. The activation enthalpy (276 kJmol-1 at temperatures above 1130 °C) closes the activation enthalpy of Co self-diffusion. This (together with the exponent of 4) suggests that the Co layer plays a role similar to that of a liquid film. Making slight changes in the chemical composition of the alloys and substituting an argon atmosphere to vacuum have no influence or stages and sintering mechanisms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-37

Citation:

Online since:

July 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Hou, Z. Xu, S. Peng, C. Rong, J. P. Liu, S. Sun, A facile synthesis of SmCo5 magnets from core/shell Co/Sm2Co3 nanoparticles, Adv. Mat. 19 (2007) 3349-3352.

DOI: 10.1002/adma.200700891

Google Scholar

[2] H. Chen, Z. Zhen, T. Todd, P. K. Chu, J. Xie, Nanoparticles for improving cancer diagnosis, Mat. Sci. Eng. R 74 (2013) 35-69.

Google Scholar

[3] G. F. Goya, V. Grazu, M. R. Ibarra, Magnetic nanoparticles for cancer therapy, Curr. Nanosci. 4 (2008) 1-16.

Google Scholar

[4] A. E. Deatsch, B. A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia, J. Magn. Magn. Mat. 354 (2014) 163-172.

DOI: 10.1016/j.jmmm.2013.11.006

Google Scholar

[5] S. March, A topical review of magnetic nanoparticles: physics and application, Fall 2013 EE519 1-15.

Google Scholar

[6] S. V. Meschel, P. Nash, Q. N. Gao, J. C. Wang, Y. Du, Standard enthalpies of formation of some Lanthanide-Cobalt binary alloys by high temperature direct synthesis calorimetry, J. Alloys Comp. 578 (2013) 465-470.

DOI: 10.1016/j.jallcom.2013.05.162

Google Scholar

[7] M. Doser, L. B. Beach, Hot formed SmCo5 to produce radially oriented motor magnets, IEEE Trans. Magn. MAG-X (1974) 735-738.

DOI: 10.1109/tmag.1974.1058380

Google Scholar

[8] D. J. Michel, E. Ryba, Powder Metallurgy Technique for the preparation of HoZn2 samples, J. Less Comm. Met. 16 (1968) 74-76.

DOI: 10.1016/0022-5088(68)90159-8

Google Scholar

[9] K. J. Strnat, Cobalt-rare earth alloys as promising new permanent magnet materials, Cobalt, 36 (1967) 133-143.

Google Scholar

[10] A. Traff, P. Skotte, Isostatic pressing of ceramic materials, methods, and trends, Powder Metall. Int. 8 (1976) 65-68.

Google Scholar

[11] D. K. Das, Twenty million energy product samarium-cobalt magnet, IEEE Trans. Magn. MAG-V (1969) 214-216.

DOI: 10.1109/tmag.1969.1066489

Google Scholar

[12] D. K. Das, Influence on sintering temperature on magnetic properties of samarium-cobalt magnets, IEEE Trans. Magn. MAG-VII (1971) 432-435.

DOI: 10.1109/tmag.1971.1067144

Google Scholar

[13] K. H. J. Buschow, P. A. Naastepad, F. F. Westendorp, Preparation of SmCo5 permanent magnets, J. Appl. Phys. 40 (1969).

DOI: 10.1063/1.1657138

Google Scholar

[14] R. E. Cech, Sintering of the die-pressed Co5Sm magnets, J. Appl. Phys. 41 (1970) 32-35.

Google Scholar

[15] R. E. Johnson, C. J. Fellows, Preparation of rare earth-cobalt permanent magnets by a simplified technique, Cobalt 52 (1971) 191-196.

Google Scholar

[16] M. G. Benz, D. L. Martin, Mechanism of sintering in cobalt-rare earth permanent magnet alloys, J. Appl. Phys. 42 (1972) 3165-3170.

DOI: 10.1063/1.1661680

Google Scholar

[17] D. L. Martin, M, G. Benz, Cobalt-rare earth permanent magnet alloys, Cobalt 50 (1971) 11-15.

Google Scholar

[18] G. H. Gessinger, E. Lamotte, K. Bachman, On the sintering mechanism of SmCo5 powders, IEEE Trans. Magn. MAG-VIII (1972) 557-559.

Google Scholar

[19] G. H. Gessinger, E. Lamotte, Der Sintermechanismus von Samarium-Kobalt-Legierungen, Zeit. Metallk. 64 (1973) 771-775.

DOI: 10.1515/ijmr-1973-641105

Google Scholar

[20] P. A. Naastepad, F. J. A. Broeder, R. J. K. Wassink, Technology of SmCo5 magnets, Powder Metall. Int. 5 (1973) 61-65.

Google Scholar

[21] P. J. Jorgensen, R. W. Bartelett, Solid-phase sintering of SmCo5, J. Less Comm. Met. 37 (1974) 205-212.

Google Scholar

[22] J. W. Walkiewitz, J. S. Winston, M. M. Wong, The effect of composition on the magnet properties of Sm-Co alloys, Proc. Ninth Rare Earth Res. Conf. Blacksburg Virginia (1971) 242-251.

Google Scholar

[23] R. Kamm, M. Steinberg, J. Wulff, Plastic deformation in metal-powder compacts, Trans. Amer. Inst. Mining Metall. Eng., Inst. Metal Div. 171 (1947) 439-456.

Google Scholar

[24] G. C. Kuczynski, Study of the sintering of glass, J. Appl. Phys. 20 (1949) 1160-1163.

Google Scholar

[25] G. C. Kuczynski, Fundamentals in sintering theory, Proc. Eighteen Sagramore Army Mat. Res. Conf., Syracuse Univ. Press (1972) 101-117.

Google Scholar

[26] G. C. Kuczynski, Physics and chemistry of sintering, Adv. Colloid Interface Sci. 3 (1972) 275-330.

Google Scholar

[27] J. Tournon, G. C. Kuczynski, Diffusion coefficients from sintering of Au-Cu alloy wires, Scripta Metall. 5 (1976) 65-68.

DOI: 10.1016/0036-9748(71)90206-7

Google Scholar

[28] W. D. Kingery, M. Berg, Study of the initial stages of solid sintering by viscous flow, evaporation-condensation and selfdiffusion, J. Appl. Phys. 26 (1955) 1205-1212.

DOI: 10.1063/1.1721874

Google Scholar

[29] R. L. Coble, Initial sintering of alumina and hematite, J. Amer. Cer. Soc. 16 (1958) 55-58.

Google Scholar

[30] F. V. Lenel, The mechanisms of sintering of the early stages of sintering, Powder Metall. High Perfor. Appl., Proc. Eighteen Sagramore Army Mat. Res. Conf., Syracuse Univ. Press (1972) 119-137.

Google Scholar

[31] M. F. Asby, A first report on sintering diagrams, Acta Metall. 22 (1974) 275-289.

Google Scholar

[32] D. L. Johnson, New method of obtaining volume, grain-boundary and surface diffusion coefficients from sintering data, J. Appl. Phys. 40 (1969) 192-200.

DOI: 10.1063/1.1657030

Google Scholar

[33] D. L. Johnson, Recent development in the analyses of sintering kinetics, Proc. Eighteen Sagramore Army Mat. Res. Conf., Syracuse Univ. Press (1972) 139-149.

Google Scholar

[34] H. E. Exner, C. Muller, Particle Rearrangement and Pore Space Coarsening During Solid-State Sintering, J. Amer. Cer. Soc. 92 (1976) 1384-1390.

DOI: 10.1111/j.1551-2916.2009.02978.x

Google Scholar

[35] J. S. Lee, L. Klinger, E. Rabkin, Particle rearrangement during sintering of heterogeneous powder mixtures: A combined experimental and theoretical study, Acta Mater. 60 (2012) 123-130.

DOI: 10.1016/j.actamat.2011.09.048

Google Scholar

[36] G. C. Kuczynski, Theory of residual porosity in powder compacts, Powder Metall. 12 (1963) 1-16.

DOI: 10.1179/pom.1963.6.12.001

Google Scholar

[37] P. Saravanan, R. Gopalan, D. Sivaprahasam, V. Chandrasekaran, Effect of sintering temperature on the structure and magnetic properties of SmCo5/Fe nanocomposite magnets by spark sintering, Intermetall. 42 (2013) 199-204.

DOI: 10.1016/j.intermet.2013.05.011

Google Scholar

[38] C. C. Herrick, The vapor pressure and heat of sublimation of samarium, J. Less Comm. Met. 7 (1964) 330-335.

DOI: 10.1016/0022-5088(64)90076-1

Google Scholar

[39] W. L. Bond, Making small spheres, Rev. Sci. Instr. 22 (1951) 344-345.

Google Scholar

[40] Y. Khan, A contribution to the Sm-Co phase diagram, Acta Crystall. B 30 (1974) 861-864.

Google Scholar

[41] A. E. Ray, A review of the binary rare earth-cobalt alloy systems, Cobalt (1974) 13-20.

Google Scholar

[42] K. L. Williams, R. W. Bartelett, P. J. Jorgensen, Contribution to the Sm-Co phase diagram, J. Less Comm. Met. 37 (1974) 174-176.

Google Scholar

[43] G. C. Kuczynski, G. Matsumura, B. D. Cullity, Segregation in homogeneous alloys during sintering, Acta Metall. 7 (1960) 209-215.

DOI: 10.1016/0001-6160(60)90129-2

Google Scholar

[44] A. M. Gadall, H. W. Hennicke, Sintering of barium hexaferrite, Powder Metall. Int. 8 (1976) 61-64.

Google Scholar

[45] G. C. Kuczynski, Sintering in multicomponent systems, Sintering and Related Phenomenon, Proc. Int. Conf., June 1965, Univ. Notre Dame, G. C. Kuczynski et al. Editors, New York, Gordon and Breach Sci. Publ. (1967) 685-714.

Google Scholar

[46] G. C. Kuczynski, Formation of oxides by sintering of component oxides, Proc. Int. Conf. Ferrites, Japan, July (1970) 87-95.

Google Scholar

[47] V. J. Lee, G. Parravano, Sintering reactions of zinc oxide, J. Appl. Phys. 30 (1959) 1735-1740.

Google Scholar

[48] G. Parravano, Chemical sintering of berthollide compounds, Reactivity of Solids, Proc. Fourth Int. Symp. Reactivity of Solids, Amsterdam, 1960, deBoer at al. Ed. Elsevier Publ. Co. Amsterdam, (1961) 83-90.

Google Scholar

[49] C. J. Meechan, Adv. Nuclear Eng. 2 (1957) 209.

Google Scholar

[50] W. J. Moore, E. L. Williams, Diffusion of zinc and oxygen in zinc oxide, Crystal Imperfections and the Chemical Reactivity of Solids, Discus. Faraday Soc., London 28 (1959) 86-93.

DOI: 10.1039/df9592800086

Google Scholar

[51] R. W. Bartelett, P. J. Jorgensen, Microstructure and growth kinetics of the fibrous subscale formed by internal oxidation of SmCo5, Metall. Trans. 5 (1974) 335-361.

DOI: 10.1007/bf02644102

Google Scholar

[52] R. W. Bartelett, P. J. Jorgensen, Microstructural changes in SmCo5 caused by oxygen sinter-annealing and thermal aging, J. Less Com. Met. 37 (1974) 21-34.

DOI: 10.1016/0022-5088(74)90005-8

Google Scholar

[53] G. C. Kuczynski, The mechanism of densification during sintering of metallic particles, Acta Metall. 4 (1965) 58-61.

Google Scholar

[54] R. C. Weast, Handbook of Chemistry and Physics, Cleveland, Ohio, The Chemical Rubber Company, 1972-1973, F-49.

Google Scholar

[55] L. Jahn, V. Ivanoz, R. Schumann, M. Loewenhaupt, Influence of the initial temperature on the thermal remagnetization of SmCo5 sintered magnets, J. Magn. Magn. Mat. 256 (2003) 41-45.

DOI: 10.1016/s0304-8853(02)00019-7

Google Scholar

[56] W. Szmaja, Studies of the domain structure of anisotropic sintered SmCo5 permanent magnets, J. Magn. Magn. Mat. 311 (2007) 469-480.

DOI: 10.1016/j.jmmm.2006.10.721

Google Scholar