Thermal Conductivity of Aluminum Particle Filled High Density Polyethylene Composites – Particle Size Effect

Article Preview

Abstract:

The aim of the experimental study is to determine thermal conductivity of composites as a function of volume fraction and size of aluminum (Al) particles. High density polyethylene (HDPE) were filled with Al particles that have different particle sizes, 80 nm and 40-80 μm. Nanocomposites were prepared by the melt-mixing technique at various volume fractions (up to 33%). Thermal conductivity of polymer composites has been measured by C-Therm thermal analyzer depending on the modified transient plane source technique. Thermal conductivity of HDPE/Al composites increases by increasing volume fraction of Al in HDPE matrix. It is found that size of Al particles hasn’t significant effect on thermal conductivity, thermal conductivity of HDPE/Al (80 nm) is close to thermal conductivity of HDPE/Al (40-80 μm).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-49

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Zhang, X. Y. Cao, Y. M. Ma, Y. C. Ke, J. K. Zhang, F. S. Wang, The effects of particle size and content on the thermal conductivity and mechanical properties of the Al2O3/ high density polyethylene (HDPE) composites, eXPRESS Polymer Letters, 5(7) (2011).

DOI: 10.3144/expresspolymlett.2011.57

Google Scholar

[2] I. Nurul Hidayah, M. Mariatti, Properties of single and hybrid aluminum and silver fillers filled high density polyethylene composite, Journal of Thermoplastic Composite Materials, 25 (2009) 209-221.

DOI: 10.1177/0892705711406161

Google Scholar

[3] I. H. Tavman, Thermal and mechanical properties of aluminum powder filled high-density polyethylene composites, Journal of Applied Polymer Science, 62 (1996) 2161-2167.

DOI: 10.1002/(sici)1097-4628(19961219)62:12<2161::aid-app19>3.0.co;2-8

Google Scholar

[4] W. Zhou, Thermal and dielectric properties of the aluminum particle reinforced linear low-density polyethylene composites, Polymer Engineering and Science, 51(5) (2011) 917-924.

DOI: 10.1002/pen.21913

Google Scholar

[5] W. Zhou, D. Yu, Fabrication, thermal, and dielectric properties of self-passivated Al/epoxy nanocomposites, J Mater Sci. 48 (2013) 7960-7968.

DOI: 10.1007/s10853-013-7606-0

Google Scholar

[6] Z. Li, W. Wu, H. Chen, Z. Zhou, Y. Wang, Y. Zhang, Thermal conductivity of micro/nano filler filled polymeric composites, RSC Advances (RSC Publishing), 3 (2013) 6417-6428.

DOI: 10.1039/c3ra22482a

Google Scholar

[7] I. H. Tavman, A. Turgut, Applications of thermophysics in science and industry – nanofluids and polymer nanocomposites. Thermophysical 2012-17th International Meeting of Thermophysical Society, 31st October - 2th November 2012; Czech Republic, 2012, 223-230.

Google Scholar

[8] H. J. Park, T. A. Kim, R. Kim, J. Kim, M. Psrk, A new method to estimate thermal conductivity of polymer composite using characteristic of fillers, Journal of Applied Polymer Science, 129(3) (2013) 965-972.

DOI: 10.1002/app.38653

Google Scholar

[9] R. Nayak, T. D. P., A. Satapathy, A computational and experimental investigation on thermal conductivity of particle reinforced composites, Computational Materials Science, 48 (2010) 576-581.

DOI: 10.1016/j.commatsci.2010.02.025

Google Scholar

[10] A. Agrawal, A. Satapathy, Development of a heat conduction model and investigation on thermal conductivity enhancement of AIN/Epoxy Composites, Procedia Engineering, 51 (2013) 573-578.

DOI: 10.1016/j.proeng.2013.01.081

Google Scholar

[11] A.S. Luyt, J.A. Molefi, H. Krump, Thermal, mechanical and electrical properties of copper powder filledlow-density and linear low-density polyethylene composites, Polymer Degradation and Stability. 91(2006) 1629-1636.

DOI: 10.1016/j.polymdegradstab.2005.09.014

Google Scholar

[12] V. Chifor, Z. Tekiner, M. Turker, R. Orban, An experimental investigation of properties of polyethylene reinforced with Al powders, Journal of Zhejiang University-SCINCE A (Applied Physics & Engineering), 1 (8) (2011) 583-592.

DOI: 10.1631/jzus.a1000286

Google Scholar

[13] I. K. Bishay, S. L. Abd-El-Messeih, S. H. Mansour, Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder, Materials and Design, 32 (2011) 62-68.

DOI: 10.1016/j.matdes.2010.06.035

Google Scholar

[14] K. Sever, I. H. Tavman, Y. Seki, A. Turgut, M. Omastova, I: Ozdemi, Electrical and Mechanical Properties of Expanded Graphite/High Density Polyethylene Nanocomposites, Composites: Part B. 53 (2013) 226-233.

DOI: 10.1016/j.compositesb.2013.04.069

Google Scholar

[15] M. Haddadi, B. Agoudjil, A. Boudenne, B. Garnier, Analytical and numerical investigayion on the effective thermal conductivtiy of polymer composites filled with conductive hollow particles, Int J Thermophys, 34 (2013) 101-112.

DOI: 10.1007/s10765-013-1393-3

Google Scholar

[16] T. K. Dey, M. Triphathi, Thermal properties of silicon powder filled high-density polyethylene composites, Thermochimica Acta, 502 (2010) 35-42.

DOI: 10.1016/j.tca.2010.02.002

Google Scholar

[17] D. Kumlutaş, I. H. Tavman, M. T. Çoban, Thermal conductivity of particle filled polyethylene composite materials, Composites Science and Technology, 63 (2003) 113–117.

DOI: 10.1016/s0266-3538(02)00194-x

Google Scholar

[18] D. Mishra, A. Satapathy, Development of theoretical models for effective thermal conductivity of glass microsphere filled polymer composites, Plastic and Polymer Technology (PAPT), 2(2) (2013), 39-47.

Google Scholar

[19] A. Boudenne, L. Ibos, M. Fois, J. C. Majeste, E. Gehin, Electrical and thermal behavior of polypropylene filled with copper particles, Composites: Part A, 36 (2005) 1545–1554.

DOI: 10.1016/j.compositesa.2005.02.005

Google Scholar

[20] M. Chikhi, B. Agoudjil, M. Haddadi, A. Boudenne, Numerical modelling of the effective thermal conductivity of heterogeneous materials, Journal of Thermoplastic Composite Materials, 26(3) (2011) 336–345.

DOI: 10.1177/0892705711424921

Google Scholar

[21] M. Jouni, A. Boundenne, G. Boiteux, V. Massardier, B. Garnier, A. Serghei, Electrical and thermal properties of polyethylene/silver nanoparticle, Polymer Composites, 34(5) (2013), 778-786.

DOI: 10.1002/pc.22478

Google Scholar

[22] A.S. Luyt, J.A. Molefi, H. Krump Thermal, mechanical and electrical properties of copper powder filledlow-density and linear low-density polyethylene composites, Polymer Degradation and Stability. 91(2006) 1629-1636.

DOI: 10.1016/j.polymdegradstab.2005.09.014

Google Scholar

[23] Y. P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Electrical and thermal conductivity of polymers filled with metal powders, European Polymer Journal, 38 (2002) 1887–1897.

DOI: 10.1016/s0014-3057(02)00064-2

Google Scholar

[24] L. Tong, A. P. Mauritz, M. K. Bannister, 3D Fibre Reinforced Polymer Composites , first ed., Elsevier Science, Oxford, (2002).

Google Scholar