Low-Cost Synthesis and Characterizations of Metal-Organic Framework (MOF-199) Materials by Nonsurfactant Templating Method

Article Preview

Abstract:

In this study, a three-dimensional (3D) copper-based metal-organic framework (MOF-199) is a microporous materials with structural formula Cu3(BTC)2 (1,3,5-benzene tricarboxylate) were successfully synthesized using nonsurfactant templating method. The preparations of MOF-199 utilized different length of straight carbon chain (oleochemical) fatty alcohols derived from palm oil were similar to those reported earlier by our group with some modifications [1]. This new method led to unique structure and properties of as-synthesized MOF-199. The addition of fatty alcohols such as octyl (C8) and decyl (C10) alcohol act as renewable template onto MOF-199 generating the required carbon template for microporous crystalline structure [2]. The MOF-199 had been synthesized using conventional hydrothermal method with the present of fatty alcohols to analyse the resulting MOF-199 in terms of structure, morphology, surface area and adsorption isotherm. MOF-199 synthesized in this study exhibited single crystal orthorhombic morphology at ca. 30 micron. The crystallinity of MOF-199 materials was improved by the addition of fatty alcohols as observed in the X-Ray Diffraction patterns.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

426-429

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Misran, S. Z. Othman, A. Manap, N. I. M. Pauzi and S. Ramesh, Sci of Adv. Mater., (2014).

Google Scholar

[2] H. Misran, R. Singh and M. A. Yarmo, Micropor. & Mesopor. Mater., 112 (1), 243-253, (2008).

Google Scholar

[3] H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Nature 402, 276 (1999).

Google Scholar

[4] J. Kim, D. O. Kim, D. W. Kim, J. Park, M. S. Jung, Inorganica Chimica Acta, Vol. 390, (2012), pp.22-25.

Google Scholar

[5] P. Chowdhury, C. Bikkina, D. Meisteer, F. Dreisbach, S. Gumma, Micropor. and Mesopor. Mater., Vol. 117, (2009), pp.406-413.

Google Scholar

[6] S. L. Serna, M. A. O. Tolentino, M. D. L. L. Nunez, A. S. Cruz, A. G. Vargas, R. C. Sierra, H. I. Beltran, J. Flores, J Alloys and Compd., Vol. 540, (2012), pp.113-120.

Google Scholar

[7] Suling Zhang, Zhuo Du, Gongke Li, Talanta, Vol. 115, (2013), pp.32-39.

Google Scholar

[8] Kuen-Song Lin, Abhijit Krishna Adhikari, Chi-Nan Ku, Chao-Lung Chiang, Hua Kuo, Inter. J Hydrogen Energ, Vol. 37(18), (2012), pp.13865-13871.

Google Scholar

[9] Y. K. Seo, G. Hundal, I. T. Jang, Y. K. Hwang, C.H. Jun, J. S. Chang, Micropor. and Mesopor. Mater., Vol. 119(1–3), (2009), pp.331-337.

Google Scholar

[10] T. Granato, F. Testa, R. Olivo, Micropor. and Mesopor. Mater., Vol. 153, (2012), pp.236-246.

Google Scholar

[11] D. Bazer-Bachi, L. Assié, V. Lecocq, B. Harbuzaru, V. Falk, Powder Tech., Vol. 255, (2014), pp.52-59.

DOI: 10.1016/j.powtec.2013.09.013

Google Scholar

[12] A. K. Cheetham, C. N. R. Rao, R. K. Feller, Chem. Commun. (2006) 4780.

Google Scholar

[13] Q. M Wang, D. Shen, M. Bulow, M. L. Lau, S. Deng, F. R Fitch N. O. Lemccoff, J. Semanscin, Micropor. Mesopor. Mater., Vol. 55, (2002), p.217.

Google Scholar

[14] P. Chowdhury, C. Bikkina, D. Meisteer, F. Dreisbach, S. Gumma, Micropor. and Mesopor. Mater., Vol. 117, (2009), pp.406-413.

Google Scholar

[15] S. Z. Othman, H. Misran, A.M. Aminuddin, M.A. Salim, N. N. H. Shah and N. A. A. Razak, Vol. 9, (2013), pp.62-65.

Google Scholar