Simulation of Basic, Protein-Based Logic Gates

Article Preview

Abstract:

In the present work, we demonstrate the theoretical feasibility of basic logic gates consisting of dipole-coupled Dronpa molecules, potentially permitting the realization of nanoscale, low energy consuming and dissipating, terahertz-frequency computers and digital signal processors. The operational principle is related to an experimentally demonstrated, electric field-induced switching behavior of proteins.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

132-135

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Csurgay ÁI, Porod W, Rakos B. Signal processing by pulse-driven molecular arrays. International Journal of Circuit Theory and Applications 2003; 31: 55–66. DOI: 10. 1002/cta. 225.

DOI: 10.1002/cta.225

Google Scholar

[2] Rakos B, Porod W, Csurgay ÁI. Computing by pulse-driven nanodevice arrays. Semiconductor Science and Technology 2004; 19: 472-474. DOI: 10. 1088/0268-1242/19/4/155.

DOI: 10.1088/0268-1242/19/4/155

Google Scholar

[3] Rakos B. Simulation of Coulomb-coupled, protein-based logic. Journal of Automation, Mobile Robotics & Intelligent Systems 2009; 3(4): 46–48.

Google Scholar

[4] Rakos B. Coulomb-coupled, protein-based computing arrays. Advanced Materials Research 2011; 222: 181-184. DOI: 10. 4028/www. scientific. net/AMR. 222. 181.

DOI: 10.4028/www.scientific.net/amr.222.181

Google Scholar

[5] Rakos B. Modeling of dipole-dipole-coupled, electric field-driven, protein-based computing architectures. International Journal of Circuit Theory and Applications 2015; 43: 60-72. DOI: 10. 1002/cta. (1924).

DOI: 10.1002/cta.1924

Google Scholar

[6] Xu D, Phillips JC, Schulten K. Protein response to external electric fields: relaxation, hysteresis, and echo. Journal of Physical Chemistry 1996; 100: 12108–12121. DOI: 10. 1021/jp960076a.

DOI: 10.1021/jp960076a

Google Scholar

[7] Habuchi S, Ando R, Dedecker P, Verheijen W, Mizuno H, Miyawaki A, Hofkens J. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proceedings of the National Academy of Sciences 2005; 102(27): 9511-9516. DOI: 10. 1073/pnas. 0500489102.

DOI: 10.1073/pnas.0500489102

Google Scholar

[8] Boneh D, Dunworth C, Lipton RJ, Sgall JI. On the computational power of DNA. Discrete Applied Mathematics 1996; 71: 79–94, DOI: 10. 1016/S0166-218X(96)00058-3.

DOI: 10.1016/s0166-218x(96)00058-3

Google Scholar

[9] Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E. An autonomous molecular computer for logical control of gene expression. Nature 2004; 429(6990): 423–429, DOI: 10. 1038/nature02551.

DOI: 10.1038/nature02551

Google Scholar

[10] Stojanovic MN, Mitchell TE, Stefanovic D. Deoxyribozyme-Based Logic Gates. Journal of the American Chemical Society 2002; 124(14): 3555–3561, DOI: 10. 1021/ja016756v.

DOI: 10.1021/ja016756v

Google Scholar

[11] Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E. Programmable and autonomous computing machine made of biomolecules. Nature 2001; 414(6862): 430–434, DOI: 10. 1038/35106533.

DOI: 10.1038/35106533

Google Scholar

[12] Seelig G, Soloveichik D, Zhang DY, Winfree E. Enzyme-free nucleic acid logic circuits. Science 2006; 314(5805): 1585–1588, DOI: 10. 1126/science. 1132493.

DOI: 10.1126/science.1132493

Google Scholar

[13] Tamsir A, Tabor JJ, Voigt CA. Robust multicellular computing using genetically encoded NOR gates and chemical wires,. Nature 2011; 469(7329): 212-215, DOI: 10. 1038/nature09565.

DOI: 10.1038/nature09565

Google Scholar

[14] Baumgardner J, Acker K, Adefuye O, Crowley ST, DeLoache W, Dickson JO, Heard L, Martens AT, Morton N, Ritter M, Shoecraft A, Treece J, Unzicker M, Valencia A, Waters M, Campbell AM, Heyer LJ, Poet JL, Eckdahl TT. Solving a Hamiltonian Path Problem with a bacterial computer. Journal of Biological Engineering 2009; 3(11), DOI: 10. 1186/1754-1611-3-11.

DOI: 10.1186/1754-1611-3-11

Google Scholar

[15] Freitas RA. Nanomedicine, Volume I: Basic Capabilities. Landes Bioscience, Austin, Texas 1999; ISBN 1-57059-645-X.

DOI: 10.1017/s0263574700212824

Google Scholar