Synthesis and Characterization of Nb-Doped TiO2 Thin Films Prepared by RF Magnetron Sputtering

Article Preview

Abstract:

Amorphous Nb-doped TiO2 thin films were deposited on (100) Si and glass substrates at room temperature by RF magnetron sputtering and a mosaic-type Nb2O5-TiO2 sputtering target. To adjust the amount of the niobium dopant in the film samples, appropriate numbers of Nb2O5 pellets were placed on the circular area of the magnetron target with intensive sputtering. By adjusting the discharge conditions and the number of niobium oxide pellets, films with dopant content varying between 0 and 16.2 at.% were prepared, as demonstrated by X-ray photoelectron spectroscopy data. The X-ray diffraction patterns of the as-deposited samples showed the lack of crystalline ordering in the samples. Surfaces roughness and energy band gap values increase with dopant concentration, as showed by atomic force microscopy and UV-Vis spectroscopy measurements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-142

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C 1 (2000) 1-24.

Google Scholar

[2] Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, T. Hasegawa, A transparent metal: Nb-doped anatase TiO2, Appl. Phys. Lett. 86, 252101 (2005).

DOI: 10.1063/1.1949728

Google Scholar

[3] M. A. Gillispie, M. F. A. M. Hest, M. S. Dabney, J. D. Perkins, D. S. Ginley, RF magnetron sputter deposition of transparent conducting Nb-doped TiO2 films on SrTiO3, J. Appl. Phys. 101 033125 (2007).

DOI: 10.1063/1.2434005

Google Scholar

[4] N. Yamada, T. Hitosugi, J. Kasai, N. L. H. Hoang, S. Nakao, Y. Hirose, T. Shimada, and T. Hasegawa, Direct growth of transparent conducting Nb-doped anatase TiO2 polycrystalline films on glass, J. Appl. Phys. 105, 123702 (2009).

DOI: 10.1063/1.3148267

Google Scholar

[5] D. Luca, D. Mardare, F. Iacomi, C.M. Teodorescu, Increasing surface hydrophilicity of titania thin films by doping, Appl. Surf. Sci. 252 (2006). 6122-6126.

DOI: 10.1016/j.apsusc.2006.05.011

Google Scholar

[6] C.M. Maghanga, G.A. Niklasson, C.G. Granqvist, Optical properties of sputter deposited transparent and conducting TiO2: Nb films, Thin Solid Films 518 (2009) 1254-1258.

DOI: 10.1016/j.tsf.2009.06.064

Google Scholar

[7] D. Mardare, M. Tasca, M. Delibas, G.I. Rusu, On the structural properties and optical transmittance of TiO2 r. f. sputtered thin films, Appl. Surf. Sci 156 (2000) 200-206.

DOI: 10.1016/s0169-4332(99)00508-5

Google Scholar

[8] E. Burstein, Anomalous Optical Absorption Limit in InSb, Phys. Rev. 93 (1954) 632-633.

DOI: 10.1103/physrev.93.632

Google Scholar

[9] T. S. Moss, The Interpretation of the Properties of Indium Antimonide, Proc. Phys. Soc. London, Sect. B 67 (1954) 775-782.

DOI: 10.1088/0370-1301/67/10/306

Google Scholar

[10] Sato, H. Akizuki, T. Kamiyama, Y. Shigesato, Transparent conductive Nb-doped TiO2 films deposited by direct-current magnetron sputtering using a TiO2−x target, Thin Solid Films 516 (2008) 5758-6762.

DOI: 10.1016/j.tsf.2007.10.047

Google Scholar

[11] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photolectron Spectrosopy, ULVAC-PHI Japan, Physical Electronics, USA (1995).

Google Scholar