Textural and Fractal Characteristics of KOH-Activated Microporous Carbon Materials and their Carbon Dioxide Storage Performances

Article Preview

Abstract:

Commercial activated carbon has been activated with KOH in order to investigate the effect of textural characteristics on CO2 storage behaviors. The KOH activation has significantly enhanced the textural properties of the adsorbents, as compared to the pristine sample. CO2 adsorption tests on the activated carbons were measured at 298 K and pressures up to 5.0 MPa, and the Langmuir-Freundlich isotherm was used to fit the adsorption data. The CO2 uptake for the resulting adsorbents was significantly higher than that of the starting adsorbent in the studied pressure range. To better understand the structures and their influences on the CO2 uptake, fractal analysis was conducted for the adsorbents on the basis of Frenkel-Halsey-Hill (FHH) equation. Fractal dimensions (D1 and D2) that calculated from N2 adsorption data were discussed. The results showed that the two fractal dimensions have different influences on CO2 adsorption capacity. There was a negative linear correlation between CO2 maximum uptake and D1, while CO2 adsorption capacity increased with fractal dimension D2 increasing. Therefore, it was concluded that appropriate pore structure fractal dimension with narrower PSDs within the microporous range had higher CO2 adsorption capacity for the adsorbents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

255-264

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. O. Adisa, B. J. Cox, J. M. Hill, Methane storage in molecular nanostructures, Nanoscale 4 (2012) 3295-3307.

DOI: 10.1039/c2nr00042c

Google Scholar

[2] Y. Huang, Q. P. Zheng, N. Fan, K. Aminian, Optimal scheduling for enhanced coal bed methane production through CO2 injection, Appl. Energ. 113 (2014) 1475-1483.

DOI: 10.1016/j.apenergy.2013.08.074

Google Scholar

[3] M. S. Shafeeyan, W. M. A. W. Daud, A. Houshmand, A. Shamiri, A review on surface modification of activated carbon for carbon dioxide adsorption, J. Anal. Appl. Pyrol. 89 (2010) 143-151.

DOI: 10.1016/j.jaap.2010.07.006

Google Scholar

[4] J. Schell, N. Casas, R. Pini, M. Mazzotti, Pure and binary adsorption of CO2, H2, and N2 on activated carbon, Adsorption 18 (2011) 49-65.

DOI: 10.1007/s10450-011-9382-y

Google Scholar

[5] Y. Feng, C. Jiang, D. Liu, W. Chu, Experimental investigations on microstructure and adsorption property of heat-treated coal chars, J. Anal. Appl. Pyrol. 104 (2013) 559-566.

DOI: 10.1016/j.jaap.2013.05.013

Google Scholar

[6] D. P. Bezerra, R. S. Oliveira, R. S. Vieira, C. L. Cavalcante, D. C. S. Azevedo, Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X, Adsorption 17 (2011) 235-246.

DOI: 10.1007/s10450-011-9320-z

Google Scholar

[7] S. Park, H. J. Song, J. Park, Selection of suitable aqueous potassium amino acid salts: CH4 recovery in coal bed methane via CO2 removal, Fuel Process. Technol. 120 (2014) 48-53.

DOI: 10.1016/j.fuproc.2013.12.006

Google Scholar

[8] J. Silvestre-Albero, A. Wahby, A. Sepúlveda-Escribano, M. Martínez-Escandell, K. Kaneko, F. Rodríguez-Reinoso, Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature, Chem. Commun. 47 (2011) 6840-6842.

DOI: 10.1039/c1cc11618e

Google Scholar

[9] M. Delavar, A. Asghar Ghoreyshi, M. Jahanshahi, S. Khalili, N. Nabian, Equilibria and kinetics of natural gas adsorption on multi-walled carbon nanotube material, RSC Adv. 2 (2012) 4490.

DOI: 10.1039/c2ra01095j

Google Scholar

[10] G. Srinivas, J. Burress, T. Yildirim, Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties, Energ. Environ. Sci. 5 (2012) 6453-6459.

DOI: 10.1039/c2ee21100a

Google Scholar

[11] D. P. Vargas, L. Giraldo, J. Silvestre-Albero, J. C. Moreno-Piraján, CO2 adsorption on binderless activated carbon monoliths, Adsorption 17 (2010) 497-504.

DOI: 10.1007/s10450-010-9309-z

Google Scholar

[12] J. P. Marco-Lozar, M. Kunowsky, F. Suárez-García, J. D. Carruthers, A. Linares-Solano, Activated carbon monoliths for gas storage at room temperature, Energ. Environ. Sci. 5 (2012) 9833-9842.

DOI: 10.1039/c2ee22769j

Google Scholar

[13] F. Khaddour, A. Knorst-Fouran, F. Plantier, M. M. Piñeiro, B. Mendiboure, C. Miqueu, A fully consistent experimental and molecular simulation study of methane adsorption on activated carbon, Adsorption 20 (2014) 649-656.

DOI: 10.1007/s10450-014-9611-2

Google Scholar

[14] M. G. Plaza, A. S. González, C. Pevida, F. Rubiera, Influence of water vapor on CO2 adsorption using a biomass-based carbon, Ind. Eng. Chem. Res. (2014).

DOI: 10.1021/ie500342q

Google Scholar

[15] Y. Feng, W. Yang, N. Wang, W. Chu, D. Liu, Effect of nitrogen-containing groups on methane adsorption behaviors of carbon spheres, J. Anal. Appl. Pyrol. 107 (2014) 204-210.

DOI: 10.1016/j.jaap.2014.02.021

Google Scholar

[16] M. S. Shafeeyan, W. M. A. W. Daud, A. Houshmand, A. Arami-Niya, Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation, Appl. Surf. Sci. 257 (2011) 3936-3942.

DOI: 10.1016/j.apsusc.2010.11.127

Google Scholar

[17] J. Silvestre-Albero, A. Silvestre-Albero, F. Rodríguez-Reinoso, M. Thommes, Physical characterization of activated carbons with narrow microporosity by nitrogen (77. 4 K), carbon dioxide (273 K) and argon (87. 3 K) adsorption in combination with immersion calorimetry, Carbon 50 (2012).

DOI: 10.1016/j.carbon.2011.09.005

Google Scholar

[18] K. Vasanth Kumar, F. Rodríguez-Reinoso, Effect of pore structure on the selectivity of carbon materials for the separation of CO2/H2 mixtures: new insights from molecular simulation, RSC Adv. 2 (2012) 9671-9678.

DOI: 10.1039/c2ra20775c

Google Scholar

[19] P. N. K. De Silva, P. G. Ranjith, Understanding the significance of in situ coal properties for CO2 sequestration: An experimental and numerical study, Int. J. Energ. Res. 38 (2014) 60-69.

DOI: 10.1002/er.3062

Google Scholar

[20] J. Jiang, Y. Cheng, Effects of igneous intrusion on microporosity and gas adsorption capacity of coals in the Haizi mine, China, The Scientific World J. 2014 (2014) 1-12.

DOI: 10.1155/2014/976582

Google Scholar

[21] J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage, J. Mater. Chem. 22 (2012) 23710-23725.

DOI: 10.1039/c2jm34066f

Google Scholar

[22] J. R. Morris, C. I. Contescu, M. F. Chisholm, V. R. Cooper, J. Guo, L. He, Y. Ihm, E. Mamontov, Y. B. Melnichenko, R. J. Olsen, S. J. Pennycook, M. B. Stone, H. Zhang, N. C. Gallego, Modern approaches to studying gas adsorption in nanoporous carbons, J. Mater. Chem. A 1 (2013).

DOI: 10.1039/c3ta10701a

Google Scholar

[23] J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage, J. Mater. Chem. 22 (2012) 23710-23725.

DOI: 10.1039/c2jm34066f

Google Scholar

[24] S. Q. Xu, Z. J. Zhou, G. S. Yu, F. C. Wang, Effects of pyrolysis on the pore structure of four chinese coals, Energ. Fuel. 24 (2010) 1114-1123.

DOI: 10.1021/ef901008a

Google Scholar

[25] Y. Yao, D. Liu, D. Tang, S. Tang, W. Huang, Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals, Int. J. Coal Geol. 73 (2008) 27-42.

DOI: 10.1016/j.coal.2007.07.003

Google Scholar

[26] W. Yang, Y. Feng, W. Chu, Catalytic chemical vapor deposition of methane to carbon nanotubes: Copper promoted effect of Ni/MgO catalysts, J. Nanotech. 2014 (2014).

DOI: 10.1155/2014/547030

Google Scholar

[27] Y. Feng, W. Yang, W. Chu, Contribution of ash content related to methane adsorption behaviors of bituminous coals, Int. J. Chem. Eng. 2014 (2014).

DOI: 10.1155/2014/956543

Google Scholar