A Computational Chemistry Approach for Investigation of Low Friction Mechanisms Based on FEP Film with Functionalized SiO2 Nanoparticles

Article Preview

Abstract:

To improve the fuel efficiency of automobile internal combustion engines, we investigated the fundamental mechanism of friction reduction within engine moving parts. A new coating was designed by introducing SiO2 nanoparticles in FEP film. The SiO2 nanoparticles were functionalized with hydrophobic fluoroalkyl units on their surface to create additional low friction property. Universal Surface Tester friction measurements revealed a significant reduction of the friction coefficient with increasing number of hydrophobic fluoroalkyl units for SiO2 surface functionalization. To clarify the friction reduction mechanisms by the functionalization of SiO2 nanoparticles, a quantum chemical calculation was carried out. The result indicates that an attractive force occurs between nanoparticle Si atoms and polymer F atoms, while by adding fluoroalkyl units on the SiO2 nanoparticle surface, this force changes to repulsive. By performing a molecular dynamics simulation of a shear model between FEP film and SiO2 nanoparticles, we observed a decrease of friction force with increasing fluoroalkyl units which lead smooth rolling motion of nanoparticles, thus confirming the repulsive effect of nanoparticle functionalization. We conclude that fluoroalkyl units on the SiO2 surface play an important role in creating a repulsive force between nanoparticle and FEP film which lead to low friction coefficient.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-150

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Kano, Y. Yasuda, Y. Okamoto, Y. Mabuchi, T. Hamada, T. Ueno, J. Ye, S. Konishi, S. Takeshima, J.M. Martin, M.I.D.B. Bouchet and T.L. Mogne: Tribol. Lett Vol. 18 (2005), p.245.

DOI: 10.1007/s11249-004-2749-4

Google Scholar

[2] E. Rejowski, S.P. Mordente, M. Pillis and T. Casserly: SAE Technical Paper, 2012-01-1329 (2012).

DOI: 10.4271/2012-01-1329

Google Scholar

[3] N.G. Demas, R.A. Erck, O.O. Ajayi and G.R. Fenske: Lubrication Science, Vol. 22 (2012), p.73.

Google Scholar

[4] Y. Wang and S.C. Tung: Wear, Vol. 225 (1999), p.1100.

Google Scholar

[5] H. Unal, U. Sen and A. Mimaroglu: Materials and Design, Vol. 27 (2006), p.694.

Google Scholar

[6] F. Bauer, H. Gläsel, U. Decker, H. Ernst, A. Freyer, E. Hartmann, V. Sauerland and R. Mehnertet: Progress in organic coatings, Vol. 47 (2003), p.147.

DOI: 10.1016/s0300-9440(03)00117-6

Google Scholar

[7] A. Gebhard, M. Englert, B. Bittmann, F. Haupert and A.K. Schlarb: Proc. 2nd Vienna Int. Conf., (2007), p.41.

Google Scholar

[8] X.Y. Song, S.H. Zheng and Q. Chen: Applied Mechanics and Materials, Vol. 316 (2013), p.950.

Google Scholar

[9] Y. Morita, T. Shibata, T. Onodera, R. Sahnoun, M. Koyama, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, M. Kubo, C.A.D. Carpio and A. Miyamoto: Jpn. J. Appl. Phys., Vol. 47 (2008), p.3032.

DOI: 10.1143/jjap.47.3032

Google Scholar

[10] Y. Morita, S. Jinno, M. Murakami, N. Hatakeyama and A. Miyamoto: International Journal of Engine Research, Vol. 15 (2014), p.399.

Google Scholar

[11] A. Rajabpour, F.Y. Akizi, M.M. Heyhat and K. Gordiz: International Nano Letters, Vol. 3 (2013), p.58.

Google Scholar

[12] P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, J. Wolff, M. Genest and A.T. Hagler: Proteins, Vol. 4 (1988), p.31.

DOI: 10.1002/prot.340040106

Google Scholar

[13] A. Miyamoto, R. Miura, A. Suzuki, N. Hatakeyama, Y. Oono, K. Kobayashi, S. Kozawa, M. Hori and M.C. Williams: Proceeding of FISITA, F2014-EPT-016 (2014).

Google Scholar

[14] S. Loehle, C. Matta, C. Minfray, T. Le Mogne, J.M. Martin, R. Iovine, Y. Obara, R. Miura and A. Miyamoto, Tribol. Lett., Vol. 53 (2014), p.319.

DOI: 10.1007/s11249-013-0270-3

Google Scholar