Optical and Morphological Properties of TiO2 Nanotubes for Sensor Applications

Article Preview

Abstract:

Highly-ordered TiO2 nanotube arrays were fabricated by electrochemical anodizing, using titanium foils as the anode and cathode and changing the amount of fluoride (NH4F) in the solution. The effect of synthesis parameters, such as, ethylene glycol solutions containing different amounts of water, NH4F, anodizing voltage, and current density were studied on the optical and morphological properties. It was observed from XRD espectra, that Anatase and Rutile phases were influenced by annealing, between 300 and 723 K, for all the samples, while morphological changes were not observed. Nanotubes diameters varying beteween 20 and 50 nm with diferent length sizes were observed from SEM micrographics. A high absorption for the UV region and a gap band round of 3.1 eV were obtained from spectrophotometry measurements. The correlation between the synthesis parameters and the optical properties presented are an excellent indicator for the TiO2 nanotubes application as optical sensors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-125

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Roy, S.P. Albu, P. Schmuki, Electrochem. Commun. 12 (2010) 949–951.

Google Scholar

[2] Yardnapar Parcharoen, Puangrat Kajitvichyanukul, Sirinrath Sirivisoot, Preecha Termsuksawad, Appl. Surf. Sci. 311 (2014) 54–61.

DOI: 10.1016/j.apsusc.2014.04.207

Google Scholar

[3] Hailei Li, Lixin Cao, Wei Liu, Ge Su, Bohua Dong, Ceram. Int. 38 (2012) 5791–5797.

Google Scholar

[4] Y.L. Cheong, F.K. Yam, Y.W. Ooi, Z. Hassan, Mater. Sci. Semicond. Process. 26 (2014) 130-136.

Google Scholar

[5] Nan Liu, Xiaoyin Chen, Jinli Zhang, Johannes W. Schwank, Catal. Today 225 (2014) 34–51.

Google Scholar

[6] Y.F. You, C.H. Xu, S.S. Xu, S. Cao, J.P. Wang, Y.B. Huang, S.Q. Shi, Ceram. Int., 40 (2014) 8659-8666.

Google Scholar

[7] P. Dhivya, Arun K. Prasad, M. Sridharan, Ceram. Int., 40 (2014) 409-415.

Google Scholar

[8] R. Pandiyan, V. Micheli, D. Ristic, R. Bartali, G. Pepponi, M. Barozzi, G. Gottardi, M. Ferrari, N. Laidani, J. Mater. Chem. 22 (2012) 22424–22432.

DOI: 10.1039/c2jm34708c

Google Scholar

[9] Ming-Yi Hsu, Nguyen Van Thang, Chih Wang, Jihperng Leu, Thin Solid Films 520 (2012) 3593–3599.

DOI: 10.1016/j.tsf.2011.12.036

Google Scholar

[10] P.S. Shinde, P.S. Patil, P.N. Bhosale, A. Brüger, G. Nauer, M. Neumann-Spallart, C.H. Bhosale, Appl Catal B 89 (2009) 288-294.

DOI: 10.1016/j.apcatb.2009.02.025

Google Scholar

[11] Craig A. Grimes, Gopal K. Mor, TiO2 Nanotube Arrays: Synthesis, Properties, and Applications, Springer, New York, (2009).

Google Scholar

[12] Poulomi Roy, Steffen Berger, and Patrik Schmuki, Angew. Chem. Int. Ed. (2011) 2904 – 2939.

Google Scholar

[13] L. Dolgov, V. Reedo, V. Kiisk, S. Pikker, I. Sildos, J. Kikas, Opt. Mater. 32 (2010) 1540–1544.

DOI: 10.1016/j.optmat.2010.06.017

Google Scholar

[14] William E. Vargas, Opt. Pura Apl. 44 (2011) 163‐183.

Google Scholar