Molecular Dynamics Study of H2O Molecular Diffusion Behavior in PAM/PVA Polymer Blends

Article Preview

Abstract:

The theoretical method of molecular dynamics was applied to study H2O molecular diffusion behavior in PAM/PVA Polymer blends, investigated the effects of component ratios, temperatures and water contents on diffusion coefficient. Results show that with the increase of PVA content in blend systems, the H2O molecule diffusion coefficient first increased and then decreased. This indicates there is an optimum component ratio to make the H2O molecule diffusion coefficient maximum. There is a certain influence of temperature on H2O molecular diffusion in PAM/PVA blend system, the higher the temperature, the bigger the H2O molecular diffusion coefficient. When the less H2O molecules contained in system, there is a less impact on the diffusion coefficient. As the number of H2O molecules reaches a certain amount, the effect on the diffusion coefficient is more obvious.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

268-272

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ricciardi R, Auriemma F, De Rosa C, et al. Macromolecules, 2004, 37 (5): 1921-(1927).

Google Scholar

[2] Stammen J A, Williams S, Ku D N. et al. Biomaterials, 2001, 22: 799-806.

Google Scholar

[3] Maruoka S, Mat suura T, Kawasaki K, et al. Curr Eye Res, 2006, 31 (7-8): 599-606.

Google Scholar

[4] Uchino Y, Shimmura S, Miyashita H, et al. J Biomed Mater Res B Appl Biomater, 2007, 81(1): 201-206.

Google Scholar

[5] RODRIGU ES I R, FORTE M M C, AZAMBUJA D S, et al. Reactive and Functional Polymers, 2007, 67 (8): 708-715.

Google Scholar

[6] HRON P, SL ECHTOV, SMETANA K, et al. Biomaterials, 1997, 18 (15): 1069-1073.

Google Scholar

[7] LABARRE D, LAURENT A, LAU TIER A, et al. Biomaterials, 2002, 23 (11): 2319-2327.

Google Scholar

[8] Lin Jianming, Tang Qunwei, Wu Jihuai. Journal of Huaqiao University (Natural Science), 2010, 31(1): 41-48.

Google Scholar

[9] Tian Shuai, Shan Guorong, Wang Luyi. Acta Polymerica Scinica, 2010, 10: 1175-1179.

Google Scholar

[10] Pavel D, Shanks R. Polymer, 2005, 46(16): 6135-6147.

Google Scholar

[11] Lu C, Ni S, Chen W, et al. Computational Materials Science, 2010, 49(1): S65-S69.

Google Scholar

[12] Pan Fusheng, Peng Fubing, Jiang Zhongyi. Chemical Engineering Science, 2007, (62): 703-710.

Google Scholar

[13] Chen Y, Liu Q L, Zhu A M, et al. Journal of Membrane Science, 2010, 348(1-2): 204-212.

Google Scholar

[14] Makrodimitri Z A, Unruh D J M, Economou I G. The Journal of Physical Chemistry B, 2011, 115(6): 1429-1439.

Google Scholar

[15] Sun H. Journal of Physical Chemistry B. 1998, 102: 7338-7364.

Google Scholar

[16] Andersen H C. Molecular dynamics simulations at constant pressure and /or temperature[J]. Journal of Chemical Physics. 1980. 72: 2374-2383.

Google Scholar

[17] Berendsen H J C, Postma J P M, van Gunsteren W F, et al. The ournal of Chemical Physics, 1984, 81(8): 3684-3690.

Google Scholar

[18] Tosi M P. Solid State Physics, 1964, 16: 1-120.

Google Scholar

[19] Ewald P P. Annals of Physic, 192164: 253-287.

Google Scholar