Mesoporous Titanium Dioxide Thin Films on Quartz via Electrochemical Anodisation Process

Article Preview

Abstract:

Titanium dioxide (TiO2) thin films were prepared by means of electrochemical anodisation or anodic spark deposition (ASD) from thin and flat metallic titanium (Ti) films pre-deposited on high quality quartz substrates by electron beam evaporation. AFM analysis indicates the formation of uniform mesoporous layers and a definite increase about 50% of the film thickness upon anodisation and about 90% upon annealing. Anodised mesoporous TiO2 films have been characterized by Raman spectroscopy, which indicates the presence of well-defined peaks related to anatase structure. Phase transformation from anatase to rutile was observed after annealing at temperatures up to 900°C for 3h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

456-460

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. M. Seeley, A. Bandyopadhyay and S. Bose: Thin Solid Films Vol. 519 (2010), Pp. 434.

Google Scholar

[2] T. Mazza, E. Barborini, I. N. Kholmanov, P. Piseri, G. Bongiorno, S. Vinati, P. Milani, C. Ducati, D. Cattaneo, A. Li Bassi, C. E. Bottani, A. M. Taurino and P. Siciliano: Appl. Phys. Lett. Vol. 87 (2005), p.103108.

DOI: 10.1063/1.2035874

Google Scholar

[3] E. Şennik, Z. çolak, N. Kılınç and Z. Z. Öztürk: International Journal of Hydrogen Energy Vol. 35 (2010), p.4420.

DOI: 10.1016/j.ijhydene.2010.01.100

Google Scholar

[4] G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar and C. A. Grimes: Solar Energy Materials & Solar Cells Vol. 90 (2006), p. (2011).

DOI: 10.1016/j.solmat.2006.04.007

Google Scholar

[5] C. Giordano, E. Saino, L. Rimondini, M. P. Pedeferri, L. Visai, A. Cigada and R. Chiesa: Colloids and Surfaces B: Biointerfaces Vol. 88 (2011), p.648.

DOI: 10.1016/j.colsurfb.2011.07.054

Google Scholar

[6] D. Regonini, A. Jaroenworaluck, R. Stevens and C.R. Bowen: Surf. Interface Anal. Vol. 42 (2010), p.139.

Google Scholar

[7] C. A. Chen, Y. S. Huang, W. H. Chung, D. S. Tsai and K. K. Tiong: J. Mater Sci: Mater Electron (2008) DOI 10. 1007/s10854-008-9595-3.

Google Scholar

[8] D. Fang, K. Huang, S. Liu and J. Huang: J. Braz. Chem. Soc. Vol. 19 (2008), p.1059.

Google Scholar

[9] C. Toccafondi, S. Uttiya, O. Cavalleri, G. Gemme, E. Barborini, F. Bisio, M. Canepa: J. Phys. D : Appl. Phys. Vol. 47 (2014), p.485301.

DOI: 10.1088/0022-3727/47/48/485301

Google Scholar

[10] S. Farsinezhad, A. N. Dalrymple and K. Shankar: Phys. Status Solidi A Vol. 211 (2014), p.1113.

Google Scholar

[11] G. K. Mor, O. K. Varghese, M. Paulose and C. A. Grimes: Adv. Funct. Mater Vol. 15 (2005), p.1291.

Google Scholar

[12] J. Y. Kim, J. H. Noh, K. Zhu, A. F. Halverson, N. R. Neale, S. Park, K. S. Hong and A. J. Frank: ACS Nano Vol. 5 (2011), p.2647.

Google Scholar

[13] J.M. Macak, H. Tsuchiya, S. Berger, S. Bauer, S. Fujimoto and P. Schmuki: Chemical Physics Letters Vol. 428 (2006), p.421.

DOI: 10.1016/j.cplett.2006.07.062

Google Scholar

[14] Y. Tang, J. Tao, Y. Zhang, T. Wu, H. Tao and Z. Bao: Acta Phys. -Chim. Sin. Vol. 24 (2008), p.2191.

Google Scholar

[15] S. Uttiya, D. Contarino, S. Prandi, M. M. Carnasciali, G. Gemme, L. Mattera, R. Rolandi, M. , Canepa and O. Cavalleri: Journal of Materials Science & Nanotechnology Vol. 1 (2014), p.1.

Google Scholar

[16] R. Loudon: Adv. Phys. Vol. 13 (1964), p.423.

Google Scholar