Research on Heavy-Duty Coating Protection System of Magnesium Alloy

Article Preview

Abstract:

The poor corrosion resistance of magnesium alloys become the bottleneck restricting its development. Based on micro-arc oxidation (MAO) technology and the characteristics of fluorocarbon coating the surface of magnesium alloy build a high corrosion protection system, namely: Based on micro-arc oxidation coating fluorocarbon coatings. The formation of the composite coating through the resistance to ageing test through the resistance to ageing test, acid and alkali experiment and salt spray test results show the excellent corrosion resistance performance. Among them, the resistance to salt spray test time can reach 1500 h, which breaks the bottleneck of magnesium alloy corrosion resistance of 1000 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

525-528

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Yu and Q. Xu: Water-Blown Polyurethane Rigid Foams Modified by Chemical Plastic-Action, Chinese Journal of Reactive Polymers, 2006, 15(8), 23-28.

Google Scholar

[2] K. G. Cowan and J. A. Harrison: The dissolution of magnesium in Cl-and F-containing aqueous solutions, Electrochem Acta, 1979, 24, 301-308.

DOI: 10.1016/0013-4686(79)85049-5

Google Scholar

[3] R. Ambat and W. Zhou: Electroless Nickel-Plating on AZ91D Magnesium Alloy: Effect of Substrate Microstructure and Plating Parameters, Surf Coat Tech, 2004, 179, 124-134.

DOI: 10.1016/s0257-8972(03)00866-1

Google Scholar

[4] J. M. Hao, H. Chen and R. J. Zhang: The Corrosion Resistance of Ceramic Coatings by Micro-Arc Magnesium Oxide, China Journal of nonferrous metals, 2003, 13(4), 988-991.

Google Scholar

[5] G. L. Li and J. H. Liu: Development of Surface Treatment for Magnesium Alloys, Materials protection, 2002, 35(3), 2-3.

Google Scholar

[6] T. Zhang, Y. W. Shao and G. Z. Meng: Corrosion of Pure Magnesium under Thin Electrolyte Layers, Electrochimica Acta, 2008, 53(27), 7921-7931.

DOI: 10.1016/j.electacta.2008.05.074

Google Scholar

[7] S. V. Gnedenkov, P. S. Gordienko and S. L. Sinnebryukhov: Antiscuff Coatings Obtained by Micro-Arc Oxidation Titanium Alloy, Russian Journal of Applied Chemistry, 2000, 73, 6-9.

Google Scholar

[8] X. Nie, A. Leyland, H. W. Song and A. Matthews: Thickness Effects on the Mechanical Properties of Micro-Arc Discharge Oxide Coatings on Aluminium alloys, Surface and Coating Technology, 1999, 21(6), 5-7.

DOI: 10.1016/s0257-8972(99)00089-4

Google Scholar

[9] S. Mathieu, C. Rapin and J. Steinmetz: A Corrosion Study of the Main Constituent Phases of AZ91 Magnesium Alloys, Corrosion Science, 2003, 45, 2741-2755.

DOI: 10.1016/s0010-938x(03)00109-4

Google Scholar

[10] S. Mathieu, C. Rapin and J. Hazan: Corrosion Behavior of High Pressure Diecast and Semisolid Cast AZ91D Alloys, Corrosion Science, 2002, 44, 2737-2756.

DOI: 10.1016/s0010-938x(02)00075-6

Google Scholar

[11] T.J. Luo, Y.S. Yang and Y.J. Li: Influence of rare earth Y on the corrosion behavior of as-cast AZ91 alloy, Electrochemical Acta, 2009, 54(26), 6433-6437.

DOI: 10.1016/j.electacta.2009.06.023

Google Scholar

[12] G. Song, A. Atrens, Y. Li and B. Zhang: Electrochemical behavior of a magnesium alloy containing rare earth elements, Applied Surface Science, 2006, 204, 189-195.

Google Scholar

[13] A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238, 37-38.

DOI: 10.1038/238037a0

Google Scholar