[1]
T. Mura, Inclusion problem, ASME Journal of Applied Mechanics Review, 1988, pp.15-20.
Google Scholar
[2]
G.R. Miller and L.M. Keer, Interaction between a rigid indenter and a near-surface void or inclusion, Journal of Applied Mechanics. 50 (1993) 615-620.
DOI: 10.1115/1.3167099
Google Scholar
[3]
N.I. Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity, Noordhoff Ltd., Groningen , (1963).
Google Scholar
[4]
A. Verruijt, Deformations of an elastic half plane with a circular cavity, Int J. Solids. Structures. 35 (1998) 2795-2804.
DOI: 10.1016/s0020-7683(97)00194-7
Google Scholar
[5]
W. C. Oliver, G. M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiment, Journal of Materials Research. 7(1992) 1564-1583.
DOI: 10.1557/jmr.1992.1564
Google Scholar
[6]
Z.Y. Ou, S.D. Pang, Fundamental solutions to Hertzian contact problem at nanoscale, Acta Mech. 224 (2013) 109-121.
DOI: 10.1007/s00707-012-0731-z
Google Scholar
[7]
G.F. Wang, X.Q. Feng, Effects of surface stresses on contact problems at nanoscale, J. Appl. Phys. 101(2013), 013510.
Google Scholar
[8]
Amir K. Miri, Reza Avazmohammadi and Fuqian Yang, Effect of surface stress on the deformation of an elastic half-plane containning a nano-cylindrical hole under a surface loading, J. Comput Theor. Nanos. 8 (2011) 1-6.
DOI: 10.1166/jctn.2011.1683
Google Scholar
[9]
M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces, Arch. Ration. Anal. 57 (1975) 291-323.
DOI: 10.1007/bf00261375
Google Scholar
[10]
V. Shenoy, A. Sharma, Pattern Formation in a Thin Solid Film with Interactions, Phys. Rev. Lett. 86( 2001).
Google Scholar
[11]
K.L. Johnson, Contact Mechaics, Cambridge University Press, London, (1985).
Google Scholar