Effect of Minimum Quantity Lubricant of Al203 Nanoparticle with SDBS on Surface Roughness during Turning of Mild Steel

Article Preview

Abstract:

This work presents a study on the effect of Minimum Quantity Lubricant of Al203 nanoparticle with Sodium Dodecylbenzene Sulfonate, SDBS on surface roughness during turning of Mild Steel under constant machining parameters. Surfactant, SDBS in the nanolubricant creates stability of the particles in the base fluid. The experiments were conducted under dry, MQL with pure nanolubricant, and MQL with nanolubricant and additional SDBS. The experimental results showed that MQL nanolubricant with additional SDBS improves the surface roughness compared to dry cutting.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-79

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Bruni, L. d'Apolito, a. Forcellese, F. Gabrielli, and M. Simoncini, Surface roughness modeling in finish face milling under MQL and dry cutting conditions, Int. J. Mater. Form., vol. 1, no. S1, p.503–506, Apr. (2008).

DOI: 10.1007/s12289-008-0151-8

Google Scholar

[2] B. Rahmati, A. A. D. Sarhan, and M. Sayuti, Investigating the optimum molybdenum disulfide ( MoS 2 ) nanolubrication parameters in CNC milling of AL6061-T6 alloy, p.1143–1155, (2014).

DOI: 10.1007/s00170-013-5334-x

Google Scholar

[3] S. Y. Sia, E. Z. Bassyony, and A. A. D. Sarhan, Development of SiO 2 nanolubrication system to be used in sliding bearings, (2014).

Google Scholar

[4] C. Mao, H. Zou, and X. Huang, The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubrication, p.1791–1799, (2013).

DOI: 10.1007/s00170-012-4143-y

Google Scholar

[5] M. Sayuti, A. a. D. Sarhan, and M. Hamdi, An investigation of optimum SiO2 nanolubrication parameters in end milling of aerospace Al6061-T6 alloy, Int. J. Adv. Manuf. Technol., Oct. (2012).

DOI: 10.1007/s00170-012-4527-z

Google Scholar

[6] M. Sayuti, A. A. D. Sarhan, and T. Tanaka, Cutting force reduction and surface quality improvement in machining of aerospace duralumin AL-2017-T4 using carbon onion nanolubrication system, p.1493–1500, (2013).

DOI: 10.1007/s00170-012-4273-2

Google Scholar

[7] W. Yu and H. Xie, A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications, J. Nanomater., vol. 2012, p.1–17, (2012).

Google Scholar

[8] T. Otanicar, J. Hoyt, M. Fahar, X. Jiang, and R. a. Taylor, Experimental and numerical study on the optical properties and agglomeration of nanoparticle suspensions, J. Nanoparticle Res., vol. 15, no. 11, p.2039, Oct. (2013).

DOI: 10.1007/s11051-013-2039-x

Google Scholar

[9] M. K. Moraveji, M. Golkaram, and R. Davarnejad, Effect of CuO nanoparticle on dissolution of methane in water, J. Mol. Liq., vol. 180, p.45–50, Apr. (2013).

DOI: 10.1016/j.molliq.2012.12.014

Google Scholar

[10] A. Ghadimi and I. H. Metselaar, The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid, Exp. Therm. Fluid Sci., vol. 51, p.1–9, Nov. (2013).

DOI: 10.1016/j.expthermflusci.2013.06.001

Google Scholar

[11] C. Mao, H. Zou, X. Zhou, Y. Huang, H. Gan, and Z. Zhou, Analysis of suspension stability for nanofluid applied in minimum quantity lubricant grinding, Int. J. Adv. Manuf. Technol., Feb. (2014).

DOI: 10.1007/s00170-014-5642-9

Google Scholar