[1]
Ozbakkaloglu, T. and Lim, J. C. (2013). Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model., Composites Part B, 55: 607-634.
DOI: 10.1016/j.compositesb.2013.07.025
Google Scholar
[2]
Ozbakkaloglu, T., Lim J. C., and Vincent, T. (2013). FRP-confined concrete in circular sections: Review and assessment of stress-strain model,. Engineering Structures, 49, 1068-1088.
DOI: 10.1016/j.engstruct.2012.06.010
Google Scholar
[3]
Lim, J., and Ozbakkaloglu, T. (2014). Confinement model for FRP-confined high-strength concrete, Journal of Composites for Construction, ASCE, 18(4), 04013058.
DOI: 10.1061/(asce)cc.1943-5614.0000376
Google Scholar
[4]
Lim, J. C., and Ozbakkaloglu, T. (2014). Design model for FRP-confined normal- and high-strength concrete square and rectangular columns., Magazine of Concrete Research, 66(20): 1020-1035.
DOI: 10.1680/macr.14.00059
Google Scholar
[5]
Lim, J., and Ozbakkaloglu, T. (2014). Lateral strain-to-axial strain relationship of confined concrete., Journal of Structural Engineering, ASCE, Doi: 10. 1061/(ASCE)ST. 1943-541X. 0001094.
DOI: 10.1061/(asce)st.1943-541x.0001094
Google Scholar
[6]
Rousakis, T., and Karabinis, A. (2008). Substandard reinforced concrete members subjected to compression: FRP confining effects., Materials and Structures, 41(9): 1595–1611.
DOI: 10.1617/s11527-008-9351-4
Google Scholar
[7]
Ozbakkaloglu, T., and Akin, E. (2012). Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression., Journal of Composites for Construction. ASCE. 16(4): 451–463.
DOI: 10.1061/(asce)cc.1943-5614.0000273
Google Scholar
[8]
Fam, A. Z., and Rizkalla, S. H. (2001). Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes., ACI Structural Journal, 98(4): 451–461.
DOI: 10.14359/10288
Google Scholar
[9]
Idris, Y., and Ozbakkaloglu, T. (2013). Seismic Behavior of high-strength concrete-filled FRP tube columns., Journal of Composites for Construction, ASCE, 17(6), 04013013.
DOI: 10.1061/(asce)cc.1943-5614.0000388
Google Scholar
[10]
Ozbakkaloglu, T. (2013). Behavior of square and rectangular ultra-high-strength concrete-filled FRP tubes under axial compression., Composites Part B: Engineering, 54: 97–111.
DOI: 10.1016/j.compositesb.2013.05.007
Google Scholar
[11]
Vincent, T., and Ozbakkaloglu, T. (2013). Influence of Concrete Strength and Confinement Method on Axial Compressive Behavior of FRP Confined High- and Ultra High-Strength Concrete., Composites Part B-Engineering, 50: 413-428.
DOI: 10.1016/j.compositesb.2013.02.017
Google Scholar
[12]
Vincent, T., and Ozbakkaloglu, T. (2013). Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete., Construction and Building Materials, 47: 814–826.
DOI: 10.1016/j.conbuildmat.2013.05.085
Google Scholar
[13]
Lim, J., and Ozbakkaloglu, T. (2014). Hoop strains in FRP-confined concrete columns: experimental observations., Material and Structures, Doi: 10. 1617/s11527-014-0358-8.
DOI: 10.1617/s11527-014-0358-8
Google Scholar
[14]
Ozbakkaloglu, T. and Vincent, T. (2014). Axial Compressive Behavior of Circular High-Strength Concrete-Filled FRP Tubes., Journal of Composites for Construction, ASCE, 18(2), 04013037.
DOI: 10.1061/(asce)cc.1943-5614.0000410
Google Scholar
[15]
Lim, J. and Ozbakkaloglu, T. (2014). Influence of silica fume on stress–strain behavior of FRP-confined HSC. " Construction and Building Materials, 63: 11-24.
DOI: 10.1016/j.conbuildmat.2014.03.044
Google Scholar
[16]
Vincent, T., and Ozbakkaloglu, T. (2014). Influence of slenderness on stress-strain behavior of concrete-filled FRP tubes: an experimental study., Journal of Composites for Construction, ASCE, Doi: 10. 1061/(ASCE)CC. 1943-5614. 0000489, 04014029.
DOI: 10.1061/(asce)cc.1943-5614.0000489
Google Scholar
[17]
Wong, Y. L., Yu, T., Teng, J. G., and Dong, S. L. (2008). Behavior of FRP-confined concrete in annular section columns., Composites Part B: Engineering, 38: 451–466.
DOI: 10.1016/j.compositesb.2007.04.001
Google Scholar
[18]
Yu, T. and Teng, J. G. (2013). Behavior of hybrid FRP-Concrete-Steel double-skin tubular columns with a square outer tube and a circular inner tube subjected to axial compression., Journal of Composites for Construction, ASCE, 17(2): 271-279.
DOI: 10.1061/(asce)cc.1943-5614.0000331
Google Scholar
[19]
Louk Fanggi, B. A., and Ozbakkaloglu, T. (2013). Compressive behavior of hollow aramid FRP-HSC-steel double-skin tubular columns., Construction and Building Materials, 48: 554–565.
DOI: 10.1016/j.conbuildmat.2013.07.029
Google Scholar
[20]
Ozbakkaloglu, T., and Louk Fanggi, B.A. (2013). FRP-HSC-Steel composite columns: behavior under monotonic and cyclic axial compression., Materials and Structures, Doi: 10. 1617/s11527-013-0216-0.
DOI: 10.1617/s11527-013-0216-0
Google Scholar
[21]
Albitar, M., Ozbakkaloglu, T., and Louk Fanggi, B.A. (2014).
Google Scholar
[22]
Idris, Y., and Ozbakkaloglu, T. (2014). Flexural behavior of FRP-HSC-steel composite beams., Thin-walled Structures, 80: 207-216.
DOI: 10.1016/j.tws.2014.03.011
Google Scholar
[23]
Ozbakkaloglu, T., and Idris, Y. (2014). Seismic behavior of FRP-high-strength concrete-steel double skin tubular columns., Journal of Structural Engineering, ASCE, 140(6), 04014019.
DOI: 10.1061/(asce)st.1943-541x.0000981
Google Scholar
[24]
Ozbakkaloglu, T., and Louk Fanggi, B.A. (2014). Axial compressive behavior of FRP-concrete-steel double-skin tubular columns made of normal- and high-strength concrete., Journal of Composites for Construction. ASCE, 18(1), 04013027.
DOI: 10.1061/(asce)cc.1943-5614.0000401
Google Scholar