[1]
G. Boscato and S. Russo:. Dissipative capacity on FRP spatial pultruded structure, Compos. Struct. Vol. 113 (2014), p.339.
DOI: 10.1016/j.compstruct.2014.03.036
Google Scholar
[2]
G. Boscato, C. Casalegno, S. Russo and J.T. Mottram: Buckling of Built-up Columns of Pultruded FRP C-sections, J. Compos. Constr. Vol. 18, Issue 4 (2014).
DOI: 10.1061/(asce)cc.1943-5614.0000453
Google Scholar
[3]
S. Russo: Damage assessment of GFRP Pultruded Structural Elements, Compos. Struct. Vol. 96 (2012), p.661.
Google Scholar
[4]
S. Russo: Experimental and finite element analysis of a very large pultruded FRP structure subjected to free vibration. Compos. Struct. Vol. 94, Issue 3 (2012), p.1097.
DOI: 10.1016/j.compstruct.2011.10.003
Google Scholar
[5]
G. Boscato, J.T. Mottram and S. Russo: Dynamic response of a sheet pile of Fiber Reinforced Polymer for waterfront barriers, J. Compos. Constr. Vol. 15, Issue 6, (2011), p.974.
DOI: 10.1061/(asce)cc.1943-5614.0000231
Google Scholar
[6]
G. Boscato, G. Riva, S. Russo and F. Sciarretta: ND tests for a first assessment of mechanical behaviour of the stone-covered façades of Palazzo Ducale in Venice, in: STREMAH - 12th Int. Conf. on Structural Repairs and Maintenance of Heritage Architecture, Chianciano, Italy, September 5th-7th, 2011, edited by C. Brebbia, Wessex Institute (2011).
DOI: 10.2495/str110511
Google Scholar
[7]
G. Boscato, A. Dal Cin, G. Riva, S. Russo and F. Sciarretta: Knowledge of the construction technique of the multiple leaf masonry façades of Palazzo Ducale in Venice with ND and MD tests, Adv. Mater. Res. Vol. 919-921 (2014), p.318.
DOI: 10.4028/www.scientific.net/amr.919-921.318
Google Scholar
[8]
G.P. Cimellaro, G. Boscato, S. Russo, and A. De Stefano: Preliminary Analysis of Ambient Vibration Tests of an Ancient Renaissance Palace after 2012 Emilia Earthquake in Northern Italy, in: 6th International Conference on Structural Health Monitoring of Intelligent Infrastructure Hong Kong, 9-11 December 2013 (2013).
DOI: 10.12989/smm.2014.1.2.231
Google Scholar
[9]
G. Boscato, A. Dal Cin, S. Russo and F. Sciarretta: SHM of Historic Damaged Churches, Adv. Mater. Res. Vol. 838-841 (2014), p.2071-(2078).
DOI: 10.4028/www.scientific.net/amr.838-841.2071
Google Scholar
[10]
G. Boscato, A. Dal Cin, F. Sciarretta, E. Sperotto and S. Russo: Structural health monitoring of basilica plan churches damaged by earthquake, in: Int. Conf. on Engineering and Applied Sciences - ICEAS, Beijing, China, July 24th-27th, 2012 (2012).
Google Scholar
[11]
G. Boscato, M. Pizzolato, S. Russo and A. Tralli: Seismic Behavior of a Complex Historical Church in L'Aquila, Int. J. Arch. Her. Vol. 8, Issue 5 (2014), p.718.
DOI: 10.1080/15583058.2012.736013
Google Scholar
[12]
S. Russo: Testing and modelling of dynamic out-of-plane behaviour of the historic masonry façade of Palazzo Ducale in Venice, Italy. Eng. Struct. Vol. 46 (2012), p.130.
DOI: 10.1016/j.engstruct.2012.07.032
Google Scholar
[13]
S. Russo: On the monitoring of historic Anime Sante Church damaged by earthquake in L'Aquila, Struct. Control Health Monit. Vol. 20, Issue 9 (2014), p.1226.
DOI: 10.1002/stc.1531
Google Scholar
[14]
S. Russo: On employment of FRP elements in constructions: the case of an All GFRP covering for historic structure Stroked by Earthquake. Accepted by J. Civ. Eng. Archit. (2014).
DOI: 10.17265/1934-7359/2012.05.008
Google Scholar
[15]
C. Casalegno, A. Cecchi, E. Reccia and S. Russo: Heterogeneous and continuous models: comparative analysis to investigate masonry wall subjected to differential settlements. Composites, Mechanics, Computations, Applications Vol. 4, Issue 3 (2013).
DOI: 10.1615/compmechcomputapplintj.v4.i3.10
Google Scholar
[16]
G. Boscato, D. Rocchi and S. Russo: Anime Sante church's dome after 2009 l'aquila earthquake, monitoring and strengthening approaches, Adv. Mater. Res. Vol. 446-449 (2012), p.3467.
DOI: 10.4028/scientific5/amr.446-449.3467
Google Scholar
[17]
J.A. Purkiss: Fire safety engineering design of structures, 2nd edition (Butterworth-Heinemann, Oxford 2006).
Google Scholar
[18]
A. H. Buchanan: Structural Design for Fire Safety (John Wiley and Sons, West Sussex, 2001).
Google Scholar
[19]
T. Lennon: Structural fire engineering (ICE Publishing, London, 2011).
Google Scholar
[20]
K. R. Kodur, M. Garlock and N. Iwankiw: Structures in fire: State-of-the-Art, Research and Training needs, Fire Tech. Vol. 48, Issue 4 (2012), p.825.
DOI: 10.1007/s10694-011-0247-4
Google Scholar
[21]
S. Russo and F. Sciarretta: Experimental and theoretical investigation on masonry after high temperature exposure, Exp. Mech. Vol. 52 (2012), p.341.
DOI: 10.1007/s11340-011-9493-0
Google Scholar
[22]
F. Sciarretta: Modeling of mechanical damage in traditional brickwork walls after fire exposure, Adv. Mater. Res. Vol. 919-921(2014), p.495.
DOI: 10.4028/www.scientific.net/amr.919-921.495
Google Scholar
[23]
S. Russo and F. Sciarretta: Masonry exposed to high temperatures: mechanical behaviour and properties - an overview, Fire Saf. J. Vol. 55 (2013), p.69.
DOI: 10.1016/j.firesaf.2012.10.001
Google Scholar
[24]
S. Russo and F. Sciarretta: Numerical investigation on the residual behaviour of masonry walls damaged by fire exposure. In: International Conference on Masonry Reinforced by Composites - MuRiCo 4, Ravenna, Italy, September 9th-11th, 2014, in press (2014).
DOI: 10.4028/www.scientific.net/kem.624.230
Google Scholar
[25]
Comitè Europeen de Normation – Technical Committee 250, UNI EN 1996-1-2, (2005).
Google Scholar
[26]
Circular letter n° 1968 of the Home Office, Republic of Italy, 2008 [in Italian].
Google Scholar
[27]
Brick Industry Association, Fire resistance of brick masonry, Technical Notes 16 (2008).
Google Scholar
[28]
D. Drysdale, An introduction to fire dynamics, 2nd edition (Wiley & sons, Chichester, 2000).
Google Scholar