Sintered SiO2 Modulus of Rupture Optimization by Means of Artificial Neural Networks

Article Preview

Abstract:

This article discusses the use of artificial neural networks for solving industrial non-trivial problem, which is undoubtedly modulus of rupture optimization in case of sintered ceramics based on amorphous SiO2. Melting crucibles made from high purity silica are commonly used for production of high purity silicon ingots that are used in photovoltaic industry. Optimal modulus of rupture is very important variable that is related to the reliability and crucible usage value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

807-811

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Gallien, T. Duffar and J.P. Garandet: Journal of Crystal Growth Vol. 390 (2014), p.125 – 128.

Google Scholar

[2] B. Gallien, Th. Duffar, S. Lay and F. Robaut: Journal of Crystal Growth Vol. 318 (2011), p.208 – 211.

DOI: 10.1016/j.jcrysgro.2010.10.100

Google Scholar

[3] J. Gajewski and T. Sadowski: Computational Materials Science Vol. 82 (2014), p.114 – 117.

Google Scholar

[4] L. R., Sha and Y. Yang: Advanced Materials Research Vol. 834 – 836 (2014), p.1877 – 1880.

Google Scholar

[5] V. Mařík, O. Štěpánková and J. Lažanský et al: Artificial intelligence 4, (In Czech) Academia Publishing, Praha, (2003).

Google Scholar

[6] J. Šíma and R. Neruda: Theoretical questions of neural networks, (In Czech) Matfyzpress, Praha, (1996).

Google Scholar

[7] C. E Loo and J. Heikkinen: ISIJ International Vol. 52 (2012), p.2158 – 2167.

Google Scholar

[8] A. E. Kushchevskii: Powder Metallurgy and Metal Ceramics Vol. 51 (2012), p.35 – 41.

Google Scholar

[9] R. Meca, M. Kvíčala, Z. Jančíkova and O. Zimný: Hutnické listy Vol. 56 (2014), p.29 – 32.

Google Scholar