Mechanical and Corrosion Behaviors of the Casting Al-Cu Alloy Modified by Nano-Scale PrxOy and LaxOy

Article Preview

Abstract:

The mechanical properties and corrosion behaviors of the casting Al-Cu alloys were investigated. The proportion of the two modifiers (PrxOy and LaxOy) has effects on the mechanical properties and the electrochemical corrosion behavior of the casting Al-Cu alloy. The ultimate true tensile strength of the Al-Cu alloy modified only by LaxOy is the highest (616.0 MPa). The fracture strain of the Al-Cu alloy modified by PrxOy and LaxOy is the highest (12.3%). The Al-Cu alloy modified by PrxOy has better corrosion resistance than any other Al-Cu alloy. The prominent mechanical properties should be attributed to the finer crystal grains and more homogeneously distributed nano-scale phase precipitates. The existence of continuous and compact protective Al2O3 and RE-O films enhanced the corrosion resistance of the modified Al-Cu alloy during the corrosion process.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

1053-1058

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.J. Wang, L.N. Wu, W. Cai, S. A, Z.H. Jiang, J. Alloys Compd. 505 (2010) 188–193.

Google Scholar

[2] I. Estrada-Guel, C. Carreño-Gallardo, D.C. Mendoza-Ruiz, M. Miki-Yoshida, E. Rocha-Rangel, R. Martinez-Sánchez, J. Alloys Compd. 483 (2009) 173–177.

DOI: 10.1016/j.jallcom.2008.07.190

Google Scholar

[3] S.P. Chakraborty, S. Banerjee, I.G. Sharma, B. Paul, A.K. Suri, J. Alloys Compd. 477 (2009) 256–261.

Google Scholar

[4] W.G. Zhao, J.G. Wang, H.L. Zhao, J.Q. Hou, Q.C. Jiang, J. Alloys Compd. 479 (2009) 30–35.

Google Scholar

[5] J. He, Q.Z. Cai, H.H. Luo, L. Yu, B.K. Wei, J. Alloys Compd. 471 (2009) 395–399.

Google Scholar

[6] H. Allachi, F. Chaouket, K. Draoui, J. Alloys Compd. 475 (2009) 300–303.

Google Scholar

[7] E.P. Banczek, L.M.C. Zarpelon, R.N. Faria, I. Costa, J. Alloys Compd. 479 (2009) 342–347.

Google Scholar

[8] H. Allachi, F. Chaouket, K. Draoui, J. Alloys Compd. 491 (2009) 223–229.

Google Scholar

[9] J.L. Ma, J.B. Wen, J. Alloys Compd. 496 (2010) 110–115.

Google Scholar

[10] H. Ahlatci, J. Alloys Compd. 503 (2010) 122–126.

Google Scholar

[11] B.R.W. Hinton, J. Alloys Compd. 180 (1992) 15–25.

Google Scholar

[12] N. Afrin, D.L. Chen, X. Cao, and M. Jahazi, Script. Mater. 57 (2007) 1004–1007.

Google Scholar

[13] X.H. Chen, and L. Lu, Scr. Mater. 57 (2007) 133–136.

Google Scholar

[14] H. Van Swygenhoven, M. Spaczer, A. Caro, and D. Farkas, Phys. Rev. B 60 (1999) 22–25.

Google Scholar

[15] D.M. Yao, W.G. Zhao, H.L. Zhao, F. Qiu, Q.C. Jiang, Scrip. Mater. 61 (2009) 1153–1155.

Google Scholar

[16] C.D. Gu, J.S. Lian, Z.H. Jiang, Adv. Eng. Mater. 7 (2005) 1032-1036.

Google Scholar