Effect of Heat Treatment on the Resistivity and Mechanical Property of Low-Pressure Semi-Solid Die Cast Aluminum Alloy Wheel

Article Preview

Abstract:

Study the property and resistivity of Low-pressure semi-solid die casting ( LPSSDC) aluminum wheel hub after heat treatment. The Brinell hardness has reached more than 100HB in all position. Tensile properties at inner rim and outer rim are both reached 280MPa. The result of resistance analysis on LPSSDC aluminum wheel hub is below. The resistivity of the material is only influenced by the supersaturated solid solution (SSSS), GP zone, metastable phase β 'and stable phase β (Mg2Si). The resistivity has a decline during aging 0-0.5h and 0.75-8h, and an increasing during 0.5-0.75h. The resistivity remains stably when the decomposition of the solid solution achieved a dynamic balance after 8h aging time.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

1064-1068

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yang Y T, Zhang H H, Shao G J. Application of computer simulation in developing automotive parts of Al alloy by using semi-solid die cast process[J]. Solid State Phenomena, 2006, 116: 630-634.

DOI: 10.4028/www.scientific.net/ssp.116-117.630

Google Scholar

[2] Merlin M, Timelli G, Bonollo F, et al. Impact behaviour of A356 alloy for low-pressure die casting automotive wheels[J]. Journal of materials processing technology, 2009, 209(2): 1060-1073.

DOI: 10.1016/j.jmatprotec.2008.03.027

Google Scholar

[3] Mao W M, Zheng Q, Zhu D P. Rheo-squeeze casting of semi-solid A356 aluminum alloy slurry[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1769-1773.

DOI: 10.1016/s1003-6326(09)60372-1

Google Scholar

[4] Long Wei, Zhou Disheng, Zhang Henghua, et al. Mechanical properties and simulation to the forging process of 6061 aluminum alloy wheel hub[J]. Shanghai Metals, 2012, 34(3): 29-32. (Chinese).

Google Scholar

[5] Flemings M C. Behavior of metal alloys in the semisolid state[J]. Metallurgical Transactions B, 1991, 22(3): 269-293.

DOI: 10.1007/bf02651227

Google Scholar

[6] Merlin M, Timelli G, Bonollo F, et al. Impact behaviour of A356 alloy for low-pressure die casting automotive wheels[J]. Journal of materials processing technology, 2009, 209(2): 1060-1073.

DOI: 10.1016/j.jmatprotec.2008.03.027

Google Scholar

[7] Zhang B, Maijer D M, Cockcroft S L. Development of a 3-D thermal model of the low-pressure die-cast (LPDC) process of A356 aluminum alloy wheels[J]. Materials Science and Engineering: A, 2007, 464(1): 295-305.

DOI: 10.1016/j.msea.2007.02.018

Google Scholar

[8] Sha G, Möller H, Stumpf W E, et al. Solute nanostructures and their strengthening effects in Al–7Si–0. 6 Mg alloy F357[J]. Acta Materialia, 2012, 60(2): 692-701.

DOI: 10.1016/j.actamat.2011.10.029

Google Scholar

[9] Butcher K S A, Tansley T L. Ultrahigh resistivity aluminum nitride grown on mercury cadmium telluride[J]. Journal of Applied Physics, 2001, 90(12): 6217-6221.

DOI: 10.1063/1.1415532

Google Scholar

[10] Wang R, Zhu H, Zhang H H. Study on the Technology and Defects in Low-Pressure Semi-Solid Die Casting of Aluminum Alloy Wheel Hub[C]. Advanced Materials Research. 2014, 936: 1791-1795.

DOI: 10.4028/www.scientific.net/amr.936.1791

Google Scholar

[11] Aaronson, H.I. Lectures on the theory of phase transformations[M]. AIME, New York, (1975).

Google Scholar

[12] Sha G, Möller H, Stumpf W E, et al. Solute nanostructures and their strengthening effects in Al–7Si–0. 6 Mg alloy F357[J]. Acta Materialia, 2012, 60(2): 692-701.

DOI: 10.1016/j.actamat.2011.10.029

Google Scholar