The Fatigue Crack Propagation of Al–Mg–Mn–Zr Alloy with Erbium

Article Preview

Abstract:

This study investigated the fatigue crack propagation of Al–Mg–Mn–Zr alloys with erbium. The research found that in this alloy the crack propagation path prefers to extend along the grain boundary. If there are too many second phases or impurities in the gain boundary, the crack propagation will be influenced. The dispersed Al3(Er, Zr) precipitate in the alloy can act as a core of heterogeneous nucleation to attract Mg, Zn and Al element, and reduce the large brittle Al3Mg2 second phase appear on the grain boundary, so the fatigue crack propagation rate can be slow down. In addition, these Al3(Er, Zr) precipitate can pin the dislocation in the alloy to reduce stress concentration at the grain boundary, so it also has some positive effect to the fatigue crack propagation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

1083-1088

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Popović, E. Romhanji, Stress corrosion cracking susceptibility of Al–Mg alloy sheet with high Mg content, J Mater Process Tech. 125 (2002) 275–280.

DOI: 10.1016/s0924-0136(02)00398-9

Google Scholar

[2] R.R. Sawtell, J.W. Morris, Dispersion Strengthened Aluminum Alloys, TMS Publishing (1988) 40–49.

Google Scholar

[3] C.B. Fuller, D.N. Seidman, D.C. Dunand, Mechanical properties of Al(Sc, Zr) alloys at ambient and elevated temperatures, Acta Mater. 51 (2003) 4803-3814.

DOI: 10.1016/s1359-6454(03)00320-3

Google Scholar

[4] Z.M. Yin, Q.L. Pan, Y.H. Zhang, Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys, Mater. Sci. Eng. A 280 (2000) 151-155.

DOI: 10.1016/s0921-5093(99)00682-6

Google Scholar

[5] A.R. Karnesky, M.E. van Dalen, D.C. Dunand, Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0. 08 at. %Sc alloy, Scr. Mater. 55 (2006) 437–440.

DOI: 10.1016/j.scriptamat.2006.05.021

Google Scholar

[6] S. Lee, A. Utsunomiya, H. Akamatsu, Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys, Acta Mater. 50 (2002) 553–564.

DOI: 10.1016/s1359-6454(01)00368-8

Google Scholar

[7] Z.X. Liu, Z.J. Li, M.X. Wang, Effect of complex alloying of Sc, Zr and Ti on the microstructure and mechanical properties of Al–5Mg alloys, Mater. Sci. Eng. A 483–484 (2008) 120–122.

DOI: 10.1016/j.msea.2006.09.166

Google Scholar

[8] J.D. Robson, A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium, Acta Mater. 52 (2004) 1409-1421.

DOI: 10.1016/j.actamat.2003.11.023

Google Scholar

[9] Y.W. Riddle, T.H. Sanders, Mater. Sci. Forum 331–337 (2000) 799-801.

Google Scholar

[10] E. Clouet, A. Barbu, Using cluster dynamics to model electrical resistivity measurements in precipitating AlSc alloys, Acta Mater. 55 (2007) 391-400.

DOI: 10.1016/j.actamat.2006.08.021

Google Scholar

[11] K.L. Kendig, D.B. Miracle, Strengthening mechanisms of an Al-Mg-Sc-Zr alloy, Acta Mater. 50 (2002) 4165–4175.

DOI: 10.1016/s1359-6454(02)00258-6

Google Scholar

[12] M.J. Li, Q.L. Pan, Y.J. Shi, Microstructure dependent fatigue crack growth in Al–Mg–Sc alloy, Mater. Sci. Eng. A 611 (2014) 142–151.

DOI: 10.1016/j.msea.2014.05.087

Google Scholar

[13] C.B. Fuller, A.R. Krause, D.C. Dunand, Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions, Mater. Sci. Eng. A 338 (2002) 8–16.

DOI: 10.1016/s0921-5093(02)00056-4

Google Scholar

[14] Y. Zhang, K.Y. Gao, S.P. Wen, The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy, J. Alloy Compd. 610 (2014) 27-34.

DOI: 10.1016/j.jallcom.2014.04.093

Google Scholar

[15] D. X Yang, X. Y Li, D. Y He, Study on microstructure and mechanical properties of Al–Mg–Mn–Er alloy joints welded by TIG and laser beam, Mater. Design, 40 (2012) 117-123.

DOI: 10.1016/j.matdes.2012.03.041

Google Scholar

[16] S.P. Wen, Z.B. Xing, H. Huang, The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy, Mater. Sci. Eng. A 516 (2009) 42–49.

DOI: 10.1016/j.msea.2009.02.045

Google Scholar

[17] Z.H. Gao, H.Y. Li, Y.Q. Lai, Effects of minor Zr and Er on microstructure and mechanical properties of pure aluminum, Mater. Sci. Eng. A 580 (2013) 92–98.

DOI: 10.1016/j.msea.2013.05.035

Google Scholar

[18] S.P. Wen, K.Y. Gao, Y. Li, Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy, Scr. Mater. 65 (2011) 592-595.

DOI: 10.1016/j.scriptamat.2011.06.033

Google Scholar

[19] H.Y. Li, Z.H. Gao, H. Yin, Effects of Er and Zr additions on precipitation and recrystallization of pure aluminum, Scr. Mater. 68 (2013) 59–62.

DOI: 10.1016/j.scriptamat.2012.09.026

Google Scholar

[20] D.X. Yang, X.Y. Li, D.Y. He, Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints, Mater. Sci. Eng. A 561 (2013) 226–231.

DOI: 10.1016/j.msea.2012.11.002

Google Scholar

[21] S. Bai, Z.Y. Liu, Y.X. Gu, Microstructures and fatigue fracture behavior of an Al–Cu–Mg–Ag alloy with a low Cu/Mg ratio, Mater. Sci. Eng. A 530 (2011) 473–480.

DOI: 10.1016/j.msea.2011.10.004

Google Scholar

[22] R.A. Karnesky, D.C. Dunand, D.N. Seidman, Evolution of nanoscale precipitates in Al microalloyed with Sc and Er, Acta Mater. 57 (2009) 4022-4031.

DOI: 10.1016/j.actamat.2009.04.034

Google Scholar

[23] A. Tolley, V. Radmilovic, U. Dahmen, Segregation in Al3(Sc, Zr) precipitates in Al–Sc–Zr alloys, Scr. Mater. 52 (2005) 529–532.

DOI: 10.1016/j.scriptamat.2004.11.021

Google Scholar