[1]
M. Popović, E. Romhanji, Stress corrosion cracking susceptibility of Al–Mg alloy sheet with high Mg content, J Mater Process Tech. 125 (2002) 275–280.
DOI: 10.1016/s0924-0136(02)00398-9
Google Scholar
[2]
R.R. Sawtell, J.W. Morris, Dispersion Strengthened Aluminum Alloys, TMS Publishing (1988) 40–49.
Google Scholar
[3]
C.B. Fuller, D.N. Seidman, D.C. Dunand, Mechanical properties of Al(Sc, Zr) alloys at ambient and elevated temperatures, Acta Mater. 51 (2003) 4803-3814.
DOI: 10.1016/s1359-6454(03)00320-3
Google Scholar
[4]
Z.M. Yin, Q.L. Pan, Y.H. Zhang, Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys, Mater. Sci. Eng. A 280 (2000) 151-155.
DOI: 10.1016/s0921-5093(99)00682-6
Google Scholar
[5]
A.R. Karnesky, M.E. van Dalen, D.C. Dunand, Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0. 08 at. %Sc alloy, Scr. Mater. 55 (2006) 437–440.
DOI: 10.1016/j.scriptamat.2006.05.021
Google Scholar
[6]
S. Lee, A. Utsunomiya, H. Akamatsu, Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys, Acta Mater. 50 (2002) 553–564.
DOI: 10.1016/s1359-6454(01)00368-8
Google Scholar
[7]
Z.X. Liu, Z.J. Li, M.X. Wang, Effect of complex alloying of Sc, Zr and Ti on the microstructure and mechanical properties of Al–5Mg alloys, Mater. Sci. Eng. A 483–484 (2008) 120–122.
DOI: 10.1016/j.msea.2006.09.166
Google Scholar
[8]
J.D. Robson, A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium, Acta Mater. 52 (2004) 1409-1421.
DOI: 10.1016/j.actamat.2003.11.023
Google Scholar
[9]
Y.W. Riddle, T.H. Sanders, Mater. Sci. Forum 331–337 (2000) 799-801.
Google Scholar
[10]
E. Clouet, A. Barbu, Using cluster dynamics to model electrical resistivity measurements in precipitating AlSc alloys, Acta Mater. 55 (2007) 391-400.
DOI: 10.1016/j.actamat.2006.08.021
Google Scholar
[11]
K.L. Kendig, D.B. Miracle, Strengthening mechanisms of an Al-Mg-Sc-Zr alloy, Acta Mater. 50 (2002) 4165–4175.
DOI: 10.1016/s1359-6454(02)00258-6
Google Scholar
[12]
M.J. Li, Q.L. Pan, Y.J. Shi, Microstructure dependent fatigue crack growth in Al–Mg–Sc alloy, Mater. Sci. Eng. A 611 (2014) 142–151.
DOI: 10.1016/j.msea.2014.05.087
Google Scholar
[13]
C.B. Fuller, A.R. Krause, D.C. Dunand, Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions, Mater. Sci. Eng. A 338 (2002) 8–16.
DOI: 10.1016/s0921-5093(02)00056-4
Google Scholar
[14]
Y. Zhang, K.Y. Gao, S.P. Wen, The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy, J. Alloy Compd. 610 (2014) 27-34.
DOI: 10.1016/j.jallcom.2014.04.093
Google Scholar
[15]
D. X Yang, X. Y Li, D. Y He, Study on microstructure and mechanical properties of Al–Mg–Mn–Er alloy joints welded by TIG and laser beam, Mater. Design, 40 (2012) 117-123.
DOI: 10.1016/j.matdes.2012.03.041
Google Scholar
[16]
S.P. Wen, Z.B. Xing, H. Huang, The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy, Mater. Sci. Eng. A 516 (2009) 42–49.
DOI: 10.1016/j.msea.2009.02.045
Google Scholar
[17]
Z.H. Gao, H.Y. Li, Y.Q. Lai, Effects of minor Zr and Er on microstructure and mechanical properties of pure aluminum, Mater. Sci. Eng. A 580 (2013) 92–98.
DOI: 10.1016/j.msea.2013.05.035
Google Scholar
[18]
S.P. Wen, K.Y. Gao, Y. Li, Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy, Scr. Mater. 65 (2011) 592-595.
DOI: 10.1016/j.scriptamat.2011.06.033
Google Scholar
[19]
H.Y. Li, Z.H. Gao, H. Yin, Effects of Er and Zr additions on precipitation and recrystallization of pure aluminum, Scr. Mater. 68 (2013) 59–62.
DOI: 10.1016/j.scriptamat.2012.09.026
Google Scholar
[20]
D.X. Yang, X.Y. Li, D.Y. He, Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints, Mater. Sci. Eng. A 561 (2013) 226–231.
DOI: 10.1016/j.msea.2012.11.002
Google Scholar
[21]
S. Bai, Z.Y. Liu, Y.X. Gu, Microstructures and fatigue fracture behavior of an Al–Cu–Mg–Ag alloy with a low Cu/Mg ratio, Mater. Sci. Eng. A 530 (2011) 473–480.
DOI: 10.1016/j.msea.2011.10.004
Google Scholar
[22]
R.A. Karnesky, D.C. Dunand, D.N. Seidman, Evolution of nanoscale precipitates in Al microalloyed with Sc and Er, Acta Mater. 57 (2009) 4022-4031.
DOI: 10.1016/j.actamat.2009.04.034
Google Scholar
[23]
A. Tolley, V. Radmilovic, U. Dahmen, Segregation in Al3(Sc, Zr) precipitates in Al–Sc–Zr alloys, Scr. Mater. 52 (2005) 529–532.
DOI: 10.1016/j.scriptamat.2004.11.021
Google Scholar