In Situ X-Ray Diffraction during Casting: Study of Hot Tearing in Al-Zn Alloys

Article Preview

Abstract:

During solidification of metallic alloys, coalescence corresponds to the formation of solid bridges between grains when both solid and liquid phases are percolated. As such, it represents a key transition with respect to the mechanical behaviour of solidifying alloys and to the prediction of solidification cracking. Coalescence starts at the coherency point when the grains begin to touch each other, but are unable to sustain any tensile loads. It ends up at the rigidity temperature when the solid phase is sufficiently coalesced to transmit macroscopic tensile strains and stresses. This temperature, also called mechanical or tensile coherency temperature, is a major input parameter in numerical modelling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. The rigidity temperature has been determined in Al Zn alloys using in situ X-ray diffraction (XRD) during casting in a dog bone shaped mould. This set-up allows the sample to build up internal stress naturally as its contraction is prevented. The cooling on both extremities of the mould induces a hot spot at the middle of the sample which is irradiated by X-rays. Diffraction patterns were recorded every 0.5 s using a detector covering a 426 x 426 mm2 area. The change of diffraction angles allowed us to observe agglomeration/decohesion of growing grain clusters and to determine a solid volume fraction at rigidity around 98 % depending on solidification time for grain refined Al 6.2 wt% Zn alloys.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

1134-1141

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Danzig, J.A.; Rappaz, M. Solidification, Defects; EPFL Press: Lausanne, Switzerland, (2009).

Google Scholar

[2] Rappaz, M.; Jacot, A.; Boettinger, W.J., Met. Mat. Trans. A 2003, 34, 467–479.

Google Scholar

[3] Rappaz, M.; Drezet, J. -M.; Gremaud, Met. Mat. Trans. A 1999, 30, 449–455.

Google Scholar

[4] Stangeland, A.; Mo, A.; M'Hamdi, M.; Viano, D. and Davidson, Met. Mat. Trans. A 2006, 37, 705–714.

Google Scholar

[5] Terzi, S.; Salvo, L.; Suery, M.; Limodin, N.; Adrien, J.; Maire, E.; Pannier, Y.; Bornert, M.; Bernard, D. and Felberbaum, M.; Scripta Mater. 2009, 61, 449–452.

DOI: 10.1016/j.scriptamat.2009.04.041

Google Scholar

[6] Suéry, M.; Terzi, S.; Mireux, B.; Salvo, L.; Adrien, J.; Maire, E. Fast, JOM 2012, 64, 83–88.

DOI: 10.1007/s11837-011-0219-7

Google Scholar

[7] Phillion, A.B.; Hamilton, R.W.; Fuloria, D.; Leung, A.C.L.; Rockett P., Connolley, T.; Lee, P.D., Acta Mater. 2011, 59, 1436–1444.

DOI: 10.1016/j.actamat.2010.11.005

Google Scholar

[8] Gourlay, C.M.; Dahle, A.K.; Nagira, T.; Nakatsuka, N.; Nogita, K.; Uesugi, K.; Yasuda, H., Acta Mater. 2011, 59, 4933–4943.

DOI: 10.1016/j.actamat.2011.04.038

Google Scholar

[9] Giraud, E.; Suéry, M.; Coret, M., Met. Mat. Trans. A 2010, 41, 2257–2268.

Google Scholar

[10] Limodin N., L. Salvo, E. Boller, M. Suéry, M. Felberbaum, S. Gailliègue, K. Madi, Acta Materialia 57 (2009) 2300–2310.

DOI: 10.1016/j.actamat.2009.01.035

Google Scholar

[11] Terzi S., J.A. Taylor, Y.H. Cho, L. Salvo, M. Suéry, E. Boller, A.K. Dahle, Acta Materialia 58 (2010) 5370–5380.

DOI: 10.1016/j.actamat.2010.06.012

Google Scholar

[12] Drezet, J. -M.; Evans, A.; Pirling, T.; Pitié, B., Int. J. Cast Met. 2012, 25, 110–116.

Google Scholar

[13] Drezet, J. -M., Pirling, T., J. Mater. Process. Technol. 214 (2014), 1372-1378.

Google Scholar

[14] Chobaut N., Repper J., Pirling T., Carron D. and Drezet J-M.: Residual stress analysis in AA7449 as-quenched thick plates using neutrons and FE modelling, 13th International Conference on Aluminum Alloys (ICAA13), Edited by: Hasso Weiland, Anthony D. Rollett, William A. Cassada, TMS (The Minerals, Metals & Materials Society), 2012, 285-291.

DOI: 10.1002/9781118495292.ch44

Google Scholar

[15] Chobaut N.; Michel, G., Saelzle P., Carron D., Drezet J. -M., Quench induced stresses in AA2618 forgings for impellers: a multi-physics and multi-scale problem, submitted to Journal of Metals, TMS, August (2015).

DOI: 10.1007/s11837-015-1363-2

Google Scholar

[16] Drezet J. -M., Mireux B., Szaraz Z., Pirling T.: In situ Neutron Diffraction during Casting: Determination of Rigidity Point in Grain Refined Al-Cu Alloys. Materials 2014, 7, 1165-1172, http: /www. mdpi. com/1996-1944/7/2/1165.

DOI: 10.3390/ma7021165

Google Scholar

[17] Diamond Light Source, Oxfordshire, UK, JEEP web site http: /www. diamond. ac. uk/Beamlines/Engineering-and-Environment/I12. html.

Google Scholar

[18] Lalpoor, M., Eskin D.G., Katgermann, L., Met. Mater. Trans. A 2009, 40, 3304-3313.

Google Scholar

[19] Alloy phase diagrams, ASM handbook, vol. 3, ASM, (1992).

Google Scholar

[20] Drezet, J. -M, Mireux B, Magdysyuk O. and Drakopoulos M., submitted to Met. Mater. Trans. A.

Google Scholar

[21] Le Bail, A., Duroy, H. and Fourquet, J. L. (1988). Mater. Res. Bull. 23, 447±452.

Google Scholar

[22] Vernède S., Jarry P., Rappaz, M., Acta Mater. 2006, 54, 4023–4034.

Google Scholar

[23] Sistaninia, M.; Phillion, A.B.; Drezet, J. -M.; Rappaz, M.,. Acta Mater. 2012, 60, 3902–3911.

DOI: 10.1016/j.actamat.2012.03.036

Google Scholar

[24] Li S., Sadayappan K. and Apelian D., Int. J. of Cast Metals Research, vol. 24 (2), 2011, pp.88-95.

Google Scholar