[1]
Cekada M, Panjan P, Macek M, Šmíd P, Comparison of structural and chemical properties of Cr-based hard coatings, Surf Coat Technol. 151-152 (2002) 31-35.
DOI: 10.1016/s0257-8972(01)01582-1
Google Scholar
[2]
R.G. Coltters, G.R. Belton, High temperature thermodynamic properties of chromium carbides Cr7C3 and Cr3C2 determined using a galvanic cell technique, Metall Trans. 15 (1984) 517-521.
DOI: 10.1007/bf02657382
Google Scholar
[3]
K. Tomomatsu, J. Matsushita, High-temperature oxidation behavior of Cr3C2 sintered body by hot pressing method, J. Adv. Sci. 11 (1999) 83-84.
DOI: 10.2978/jsas.11.83
Google Scholar
[4]
W. Reichl, K. Hayek, The vanadium sbusurface alloy on polycrystalline rhodium: formation and catalytic properties, J. Catal. 222 (2004) 53-64.
DOI: 10.1016/j.jcat.2003.09.019
Google Scholar
[5]
X.Q. OU, M. Song, T.T. Shen, D.H. Xiao, Y.H. He, Fabrication and mechanical properties of ultrafine grained WC-10Co-0. 45-0. 25VC alloys, Int. J. Refract. Met. Hard Mater. 29 (2011) 260-267.
DOI: 10.1016/j.ijrmhm.2010.11.004
Google Scholar
[6]
H.F. Zhao, L.H. Zhu, Q.W. Huang, Nanocrystalline WC-10% Co-0. 8% VC Cemented Carbides Prepared by spark plasma sintering, Rare met. Mater. Eng. 34 (2005) 82-85.
Google Scholar
[7]
M. Furukawa, M. Sato, O. Nakano, T. Kitada, H. Hiraishi, Y. Yamagami, Hot isostatic pressing of chromium carbide, Nippon Tungsten Rev. 22 (1989) 73-82.
Google Scholar
[8]
X. Ma, K. Tanihata, Y. Miyamoto, Gas-pressure combustion sintering and properties of ceramic and its compositie with TiC, J. Ceram. Soc. Jpn. 100 (1992) 605-607.
DOI: 10.2109/jcersj.100.605
Google Scholar
[9]
Hirota K, Mitani K, Yoshinaka M, Yamaguchi O, Simultaneous synthesis and consolidation of chromium carbids (Cr3C2, Cr7C3 and Cr23C6) by pulsed electric-current pressure sintering, Mater Sci Eng 399 (2005) 154-160.
DOI: 10.1016/j.msea.2005.02.062
Google Scholar
[10]
T. Min, Y. Gao, Y. Li, Y. Yang, R. Li, X.J. Xie, First-Principles Calculations study on electronic structures, hardness and debye temperature of chromium carbides, Rare met. Mater. Eng. 22 (2012) 2005-(2009).
Google Scholar
[11]
Y.F. Li, Y.M. Gao, B. Xiao, T. Mina, Y. Yanga, S.Q. Ma, D.W. Yi, The eletronic, mechanical properties and theoretical hardness of chromium carbids by first-principles calculations, J. Alloys Compd. 509 (2011) 5242 - 5249.
DOI: 10.1016/j.jallcom.2011.02.009
Google Scholar
[12]
C. Jiang, First-principles study of structural, elastic, and electronic properties of chromium carbides, Appl. Phys. Lett. 92 (2008) 041909 - 041090-3.
Google Scholar
[13]
H.K. Wang, D.W. He, X.Z. Yan, C Xu, J.W. Guan, N. Tan, W.D. Wang, Quantitative measurements of pressure gradients for the pyrophyllite and magnesium oxide pressuretransmitting mediums 8 GPa in a large-volume cubic cell. High Pressure Res. 31 (2011).
DOI: 10.1080/08957959.2011.614238
Google Scholar
[14]
K. Niihara, R. Morena, D.P.H. Hasselman, Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1 (1982) 13-16.
DOI: 10.1007/bf00724706
Google Scholar
[15]
Y.T. Zou, D.W. He, X.K. Wei, Y.R. Cheng, T.C. Lu, X.H. Chang, S.M. Wang, L. Lei, Nanosintering mechanism of MgAl2O4 transparent ceramics under high pressure, Mater. Chem. Phy. 123 (2010) 529-533.
DOI: 10.1016/j.matchemphys.2010.05.009
Google Scholar