Synthesis and UC Luminescence Properties of NaYF4:Yb,Er Microsheets

Article Preview

Abstract:

Hexagonal NaYF4:Yb3+/Er3+ microsheets were successfully synthesized via a hydrothermal method assisted by sodium oxalate as a shape modifier. XRD, FE-SEM, TEM and SAED have been used to study the morphologies and crystal structure of the products. The effects of the pH values on the crystal structure, morphology and size were discussed. The hexagonal NaYF4:Yb3+/Er3+ microsheets show characteristic upconversion fluorescence at green (521-540 nm) and red (630-680 nm) corresponding to the 4f-4f transition of Er3+. The green and red emission intensity for microsheets has a great increase compared to that for hexagonal microspheres, and the intensity of the green emission is greater than that of the red one.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

326-330

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Zhou, Z. Liu, F. Li, Upconversion nanophosphors for small-animal imaging, Chem. Soc. Rev. , 41 (2012) 1323-1349.

DOI: 10.1039/c1cs15187h

Google Scholar

[2] T. Sandrock, H. Scheife, E. Heumann, G. Huber, High-power continuous-wave upconversion fiber laser at room temperature, Opt. Lett. 22 (1997) 808-810.

DOI: 10.1364/ol.22.000808

Google Scholar

[3] X. Wang, J. Zhuang, Q. Peng, Y. Li, Hydrothermal Synthesis of Rare-earth Fluoride Nanocrystals, Inorg. Chem. 45 (2006) 6661-6665.

DOI: 10.1021/ic051683s

Google Scholar

[4] D. Ma, S. Huang, Y. Yu, Y. Dong, Rare-earth-ion-doped hexagonal-phase NaYF4 nanowires: Controlled synthesis and luminescent properties, J. Phys. Chem. C 113 (2009) 8136–8142.

DOI: 10.1021/jp901369n

Google Scholar

[5] X. Liang, X. Wang, J. Zhuang, Q. Peng, Y. D. Li, Branched NaYF4 nanocrystals with luminescent properties, Inorg, Chem. 46 (2007) 6050-6055.

DOI: 10.1021/ic700523x

Google Scholar

[6] H. S. Qian, Y. Zhang, Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence'. Langmuir, 24 (2008) 12123-12125.

DOI: 10.1021/la802343f

Google Scholar

[7] Y. Wei, F. Lu, X. Zhang, D. Chen, Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4: Yb, Er nanoplates, Chem. Mater. 18 (2006) 5733–5737.

DOI: 10.1021/cm0606171

Google Scholar

[8] L. M. Song, S. J. Zhang, X. Q. Wu, Q. W. Wei, Synthesis of porous and trigonal TiO2 nanoflake, its high activity for sonocatalytic degradation of rhodamine B and kinetic analysis, Ultrasonics Sonochemistry, 19 (2012) 1169–1173.

DOI: 10.1016/j.ultsonch.2012.03.011

Google Scholar

[9] X. Y. Yan, X. L. Tong, J. Wang, C. W. Gong, M. G. Zhang, L. P. Liang, Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application, Journal of Alloys and Compounds, 593 (2014) 184–189.

DOI: 10.1016/j.jallcom.2014.01.036

Google Scholar

[10] Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, H. Zhang, Controlled synthesis and morphology dependent upconversion luminescence of NaYF4: Yb, Er nanocrystals, Nanotechnology, 18 (2007) 275604-275609.

DOI: 10.1088/0957-4484/18/27/275609

Google Scholar

[11] A.X. Yin, Y.W. Zhang, L.D. Sun, C.H. Yan, Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4: Yb, Tm nanocrystals, Nanoscale, 2 (2010) 953-959.

DOI: 10.1039/b9nr00397e

Google Scholar

[12] F. Wang, J. Wang, X.G. Liu, Direct Evidence of a Surface Quenching Effect on Size-Dependent Luminescence of Upconversion Nanoparticles, Angewandte Chemie, 122 (2010) 7618-7622.

DOI: 10.1002/ange.201003959

Google Scholar

[13] Q. M. Huang, H. Yu, X. Q. Zhang, J. C. Yu, Synthesis of Different Morphology Er3+/Yb3+ Codoped Hexagonal NaYF4 and Upconversion Luminescence Property Investigation, Acta. Chim. Sinica, 71 (2013) 1071-1078.

DOI: 10.6023/a13020187

Google Scholar