Preparation and Characterization of Carbon/CNTs Hybrid Nanofibers via a Simple Electrospinning Route

Article Preview

Abstract:

Carbon/CNTs hybrid nanofibers (200-300 nm in diameter) were prepared by electrospinning a precursor of polyacrylonitrile (PAN) and surface modified CNTs. CNTs modified by strong acid are well dispersed in the PAN precursor which is critical for homogenous carbon/CNTs hybrid nanofibers. The prepared nanofibers are promising reinforcements for carbon or resin based composites.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

321-325

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Motta M, Moisala A, Kinloch I. High performance fibers from dog bone, carbonnanotubes. Advanced Materials, 19 (21), 2007, 3721-3726.

DOI: 10.1002/adma.200700516

Google Scholar

[2] Vigolo B, Penicaud A, Coulon C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 290 (5495), 2000, 1331-1334.

DOI: 10.1126/science.290.5495.1331

Google Scholar

[3] Dalton A B, Collins S, Munoz E, et al. Super-tough carbon-nanotube fibres. Nature, 2003, 423(6941): 703-703.

DOI: 10.1038/423703a

Google Scholar

[4] Luis B. Modesto-López, Ricardo J. Chimentão, Mayra G. Álvarez, Joan Rosell-Llompart, Francisco Medina, Jordi Llorca Applied Clay Science, 101, 2014, 461-467.

DOI: 10.1016/j.clay.2014.07.037

Google Scholar

[5] G. -M. Kim, G.H. Michler, P. Pötschke Polymer, 46(18), 2005, 7346-7351.

Google Scholar

[6] Sang Hee Park, Chan Kim, Young Il Jeong, Dae Young Lim, Youn Eung Lee, Kap Seung Yang, Synthetic Metals, 146(2), 2004, 207-212.

Google Scholar

[7] Lei Wang, Zheng-Hong Huang, Mengbin Yue, Mingzhe Li, Mingxi Wang, Feiyu Kang, Chemical Engineering Journal, 218, 2013, 232-237.

Google Scholar

[8] Ericson L M, Fan H, Peng H, et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science, 2004, 305(5689): 1447-1450.

Google Scholar

[9] Steinmetz J, Glerup M, Paillet M, et al. Production of pure nanotube fibers using a modified wet-spinning method. Carbon, 43(11), 2005, 2397-2400.

DOI: 10.1016/j.carbon.2005.03.047

Google Scholar

[10] Kozlov M E, Capps R C, Sampson W M, et al. Spinning Solid and Hollow Polymer‐Free Carbon Nanotube Fibers. Advanced Materials, 17(5), 2005, 614-617.

DOI: 10.1002/adma.200401130

Google Scholar

[11] Granero A J, Razal J M, Wallace G G. Spinning Carbon Nanotube‐Gel Fibers Using Polyelectrolyte Complexation. Advanced Functional Materials, 18(23), 2008, 3759-3764.

DOI: 10.1002/adfm.200800847

Google Scholar

[12] Jiang K, Li Q, Fan S. Nanotechnology: Spinning continuous carbon nanotube yarns. Nature, 419(6909), 2002, 801-801.

DOI: 10.1038/419801a

Google Scholar

[13] Zhang X, Li Q, Tu Y, et al. Strong Carbon‐Nanotube Fibers Spun from Long Carbon‐Nanotube Arrays. Small, 3(2), 2007, 244-248.

DOI: 10.1002/smll.200600368

Google Scholar

[14] Zhang X, Li Q, Holesinger T G, et al. Ultrastrong, Stiff, and Lightweight Carbon‐Nanotube Fibers. Advanced Materials, 19(23), 2007, 4198-4201.

DOI: 10.1002/adma.200700776

Google Scholar

[15] Hata K, Futaba D N, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 306(5700), 2004, 1362-1364.

DOI: 10.1126/science.1104962

Google Scholar

[16] Li Y L, Kinloch I A, Windle A H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 304(5668), 2004, 276-278.

DOI: 10.1126/science.1094982

Google Scholar

[17] Zhang, X.F.; Liu, T.; Sreekumar, T.V.; Kumar,S.; Hu, X.D.; Smith, K., Polymer 45 (26), 2004, 8801-8807.

Google Scholar