Microwave Synthesis of the Composites (α-Al2O3+TiB2)/NiAl from Al-TiO-B-Ni System

Article Preview

Abstract:

NiAl matrix composites reinforced with a-Al2O3 and TiB2 were fabricated by microwave synthesis from Al-TiO2-B-Ni system. The reaction process and microstructures were analyzed by using differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM).The results showed that the ignition temperatures of the reaction heating by microwave and conventional method were approximately 556°C and 592°C respectively. Furthermore, the fabrication time by microwave synthesis was about several minutes, which was much shorter than two hours spent usually in conventional heating method. The a-Al2O3 phase aggregated at the trigonal grain boundary of the NiAl matrix, and the TiB2 phase distributed uniformly in the NiAl matrix.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

604-607

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Hu, T. Weirich, B. Hallstedt, H. Chen, Y. Zhong, G. Gottstein: Acta Materila Vol. 54(2006), pp.2473-2488.

Google Scholar

[2] L. Hu, W. Hu, G. Gottstein, S. Bogner, S. Hollad, A. Bührig-Polaczek: Mater. Sci. Eng. A Vol. 539(2012), pp.211-222.

DOI: 10.1016/j.msea.2012.01.083

Google Scholar

[3] O. Ozdemir, S. Zeytin, C. Bindal: Alloys Comp., Vol. 508(2010), pp.216-221.

Google Scholar

[4] V. Udhayabanu, K.R. Ravi, B.S. Murty: J. Alloys Comp. Vol. 509S(2011), pp.223-228.

Google Scholar

[5] H.L. Zhao, F. Qiu, S.B. Jin, Q.C. Jiang: Intermetallics, Vol. 27(2012), pp.1-5.

Google Scholar

[6] M.X. Gao, Y. Pan, F.J. Oliveira, J.L. Baptista, J.M. Vieira: Mater. Lett. Vol. 58(2004), p.1761–1765.

Google Scholar

[7] C.L. Yeh, S.H. Su, H.Y. Chang: J. Alloys Compd. Vol. 398 (2005), pp.85-93.

Google Scholar

[8] X. Zhu, T. Zhang, V. Morris, D. Marchant: Intermetallics Vol. 18(2010), pp.1197-1204.

Google Scholar

[9] L.Y. Sheng, F. Yang, T.F. Xi, J.T. Guo: J. Alloys Comp. Vol. 554(2013), pp.182-188.

Google Scholar

[10] Ali Akbar Shokati, Nader Parvin, Naser Sabzianpour, Mohammad Shokati, Ali Hemmati: J. Alloys Comp. Vol. 549(2013), pp.141-146.

DOI: 10.1016/j.jallcom.2012.08.024

Google Scholar

[11] Ali Akbar Shokati, Nader Parvin, Mohammad Shokati:J. Alloys Comp. Vol. 585(2014), pp.637-643.

Google Scholar

[12] G.H. Xu, Z. Lub, K.F. Zhang: Intermetallics Vol. 31(2012), pp.99-104.

Google Scholar

[13] C.Y. Tang, C.T. Wong, L.N. Zhang, M.T. Choy, T.W. Chow, K.C. Chan, T.M. Yue, Q. Chen: J. Alloys Comp. Vol. 557(2013), pp.67-72.

Google Scholar

[14] R.R. Zheng, Y. Wua, S.L. Liao, W.Y. Wang, W. B Wang, A.H. Wang: J. Alloys Comp. Vol. 590(2014), pp.168-175.

Google Scholar

[15] Eric B. Hostetler, Ki-Joong Kim, RichardP. Oleksak, Robert C. Fitzmorris, Daniel A. Peterson, Padmavathi Chandran, Chih-Hung Chang, Brian K. Paul, David M. Schut, Gregory S. Herman: Mater. Lett. Vol. 128 (2014), pp.54-59.

DOI: 10.1016/j.matlet.2014.04.089

Google Scholar

[16] S.K. Thakur, T.S. Kong, M. Gupta: Mater. Sci. Eng. A Vol. 452-453 (2007), pp.61-69.

Google Scholar

[17] S.D. Luo, J.H. Yi, Y.L. Guo, Y.D. Peng, L.Y. Li, G. Chen, J.M. Ran: J. Wuhan Univ. Technol. Mater. Sci. Vol. 25 (2010), pp.437-443.

DOI: 10.1007/s11595-010-0019-x

Google Scholar