Mechanical Properties of the PcBN-Alcomposites are Improved by Pressure Infiltration

Article Preview

Abstract:

PcBN–Al composites(PAC)have been synthesized by pressure infiltration(PI) and a general mixing method(GM)[1-3] with a wide grain sizes range of 4-25 um and a wide temperature range of 1200-1600°C at 5.0 GPa,respectively.Hardness ranged between 30and 40 GPa, while the flank wear (Vb) reached 0.12mm when it finished 4000m in cutting test ofPAC synthesized by PI method. Hardness ranged between 25 and 35GPa, while the flank wear (Vb) reached 0.14 mm when it finished 4000mof PAC synthesized by GM method. The homogeneity of PcBN–Al synthesized by PI have been improved compared with GM. PI is a superior method to synthesize PAC in the field of mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

664-669

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Xiao-Zheng Rong, T. Yano, J. Mater. Sci. 39, 4705 (2004).

Google Scholar

[2] Y. Li, S. Li, R. Lv, J. Mater. Res. 23, 2366 (2008).

Google Scholar

[3] A. McKie, J. Winzer, I. Sigalas, M. Herrmann, L. Weiler, J. Rodel, N. Can. Ceramics International 37 (2011) 1–8.

DOI: 10.1016/j.ceramint.2010.07.034

Google Scholar

[4] R. Riedel, Handbook of Ceramic Hard Materials, Wiley-VCH, (2002).

Google Scholar

[5] E. Benko, J. Morgiel, T. Czeppe, Ceramics International 23 (1997) 89.

Google Scholar

[6] J. Kopac, P. Krajnik, J. Mater. Process. Tech. 175 (2006) 278.

Google Scholar

[7] X.L. Liu, D.H. Wen, Z.J. Li, L. Xiao, F.G. Yan, J. Mater. Process. Tech. 129 (2002) 200.

Google Scholar

[8] H. Kato, K. Shintani, H. Sumiya, J. Mater. Process. Tech. 127 (2002) 217.

Google Scholar

[9] K.S. Neo, M. Rahman, X.P. Li, H.H. Khoo, M. Sawa, Y. Maeda, J. Mater. Process. Tech. 140 (2003) 326.

Google Scholar

[10] Takashi Taniguchi, Minoru Akaishi, and Shinobu Yamaoka,J. Mater. Res., Vol. 14, No. 1, Jan (1999).

Google Scholar

[11] E. Benko, cBN–TiH2composites, chemical equilibria, microstructure and mechanical studies, Diam. Relat. Mater. 6 (1997), p.1192–1197.

Google Scholar

[12] E. Benko, P. Klimczyk, S. Mackiewicz, T.L. Barr, and E. Piskorska, cBN–Ti3SiC2composites, Diam. Relat. Mater. 13 (2004), p.521–525.

DOI: 10.1016/j.diamond.2003.12.029

Google Scholar

[13] Xiao-Zheng Rong, O. Fukunaga, Trans. Materials. Res. Soc., Jpn. 14 (1994) 1455.

Google Scholar

[14] W. Guo, X. Jia, J. Shang, J. Cryst. Growth 312, 3544 (2010).

Google Scholar

[15] R. Q. Li, F Peng J.W. Guan, X.Z. Yan S.Z. Liu,W. K. Zhang, X.L. Zhou,J Mater Sci: Mater Electron (2013) 24: 1175–1180.

Google Scholar