[1]
Zaid, B., et al., Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy. Corrosion Science, 2008. 50(7): pp.1841-1847.
DOI: 10.1016/j.corsci.2008.03.006
Google Scholar
[2]
Dan, Z., I. Muto, and N. Hara, Effects of environmental factors on atmospheric corrosion of aluminium and its alloys under constant dew point conditions. Corrosion Science, 2012. 57(0): pp.22-29.
DOI: 10.1016/j.corsci.2011.12.038
Google Scholar
[3]
Berkeley, D.W., H.E.M. Sallam, and H. Nayeb-hashemi, The effect of pH on the mechanism of corrosion and stress corrosion and degradation of mechanical properties of AA6061 and Nextel 440 fiber-reinforced AA6061 composite. Corrosion Science, 1998. 40(2–3): pp.141-153.
DOI: 10.1016/s0010-938x(97)00102-9
Google Scholar
[4]
Grilli, R., et al., Corrosion behaviour of a 2219 aluminium alloy treated with a chromate conversion coating exposed to a 3. 5% NaCl solution. Corrosion Science, 2011. 53(4): pp.1214-1223.
DOI: 10.1016/j.corsci.2010.12.006
Google Scholar
[5]
Lunder, O., et al., Formation and characterisation of a chromate conversion coating on AA6060 aluminium. Corrosion Science, 2005. 47(7): pp.1604-1624.
DOI: 10.1016/j.corsci.2004.08.012
Google Scholar
[6]
Liu, Y., et al., Chromate conversion coatings on aluminium: influences of alloying. Corrosion Science, 2004. 46(2): pp.297-312.
DOI: 10.1016/s0010-938x(03)00157-4
Google Scholar
[7]
Osborne, J.H., Observations on chromate conversion coatings from a sol–gel perspective. Progress in Organic Coatings, 2001. 41(4): pp.280-286.
DOI: 10.1016/s0300-9440(01)00143-6
Google Scholar
[8]
Gallardo, J., et al., Effect of Sintering Temperature on the Corrosion and Wear Behavior of Protective SiO2-Based Sol-Gel Coatings. Journal of Sol-Gel Science and Technology, 2003. 27(2): pp.175-183.
DOI: 10.1023/a:1023702701850
Google Scholar
[9]
Jing, C. and J. Hou, Sol-gel-derived alumina/polyvinylpyrrolidone hybrid nanocomposite film on metal for corrosion resistance. Journal of Applied Polymer Science, 2007. 105(2): pp.697-705.
DOI: 10.1002/app.26074
Google Scholar
[10]
Phani, A.R., F.J. Gammel, and T. Hack, Structural, mechanical and corrosion resistance properties of Al2O3–CeO2 nanocomposites in silica matrix on Mg alloys by a sol–gel dip coating technique. Surface and Coatings Technology, 2006. 201(6): pp.3299-3306.
DOI: 10.1016/j.surfcoat.2006.07.002
Google Scholar
[11]
Phani, A.R., et al., Enhanced corrosioon resistance by sol-gel-based ZrO2-CeO2 coatings on magnesium alloys. Materials and Corrosion, 2005. 56(2): pp.77-82.
DOI: 10.1002/maco.200403823
Google Scholar
[12]
Sharma, A. and A.K. Singh, Electroless Ni-P and Ni-P-Al2O3 Nanocomposite Coatings and Their Corrosion and Wear Resistance. Journal of Materials Engineering and Performance, 2013. 22(1): pp.176-183.
DOI: 10.1007/s11665-012-0224-1
Google Scholar
[13]
Poznyak, S.K., et al., Preparation and corrosion protective properties of nanostructured titania-containing hybrid sol–gel coatings on AA2024. Progress in Organic Coatings, 2008. 62(2): pp.226-235.
DOI: 10.1016/j.porgcoat.2007.12.004
Google Scholar
[14]
Montemor, M.F. and M.G.S. Ferreira, Cerium salt activated nanoparticles as fillers for silane films: Evaluation of the corrosion inhibition performance on galvanised steel substrates. Electrochimica Acta, 2007. 52(24): pp.6976-6987.
DOI: 10.1016/j.electacta.2007.05.022
Google Scholar
[15]
Andreatta, F., et al., Development and industrial scale-up of ZrO2 coatings and hybrid organic–inorganic coatings used as pre-treatments before painting aluminium alloys. Progress in Organic Coatings, 2011. 72(1–2): pp.3-14.
DOI: 10.1016/j.porgcoat.2011.01.011
Google Scholar
[16]
Reddy, I.N., et al., Development of SiO2 based thin film on metal foils for space application. Ceramics International, 2013. 39(7): pp.8493-8498.
DOI: 10.1016/j.ceramint.2013.02.082
Google Scholar
[17]
Schem, M., et al., CeO2-filled sol–gel coatings for corrosion protection of AA2024-T3 aluminium alloy. Corrosion Science, 2009. 51(10): pp.2304-2315.
DOI: 10.1016/j.corsci.2009.06.007
Google Scholar
[18]
Li, H.X., et al., Characterization of Al2O3 ceramic coatings on 6063 aluminum alloy prepared in borate electrolytes by micro-arc oxidation. Journal of Alloys and Compounds, 2008. 462(1–2): pp.99-102.
DOI: 10.1016/j.jallcom.2007.08.046
Google Scholar
[19]
Zaharescu, M., et al., SiO2 based hybrid inorganic–organic films doped with TiO2–CeO2 nanoparticles for corrosion protection of AA2024 and Mg-AZ31B alloys. Corrosion Science, 2009. 51(9): p.1998-(2005).
DOI: 10.1016/j.corsci.2009.05.022
Google Scholar
[20]
Hamdy, A.S., Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys. Materials Letters, 2006. 60(21–22): pp.2633-2637.
DOI: 10.1016/j.matlet.2006.01.049
Google Scholar
[21]
Kobayashi, Y., T. Ishizaka, and Y. Kurokawa, Preparation of alumina films by the sol-gel method. Journal of Materials Science, 2005. 40(2): pp.263-283.
DOI: 10.1007/s10853-005-6080-8
Google Scholar
[22]
Zheng, H. -Y. and M. -Z. An, Electrodeposition of Zn–Ni–Al2O3 nanocomposite coatings under ultrasound conditions. Journal of Alloys and Compounds, 2008. 459(1–2): pp.548-552.
DOI: 10.1016/j.jallcom.2007.05.043
Google Scholar
[23]
Zhong, X., et al., Effect of sintering temperature on corrosion properties of sol–gel based Al2O3 coatings on pre-treated AZ91D magnesium alloy. Corrosion Science, 2009. 51(12): pp.2950-2958.
DOI: 10.1016/j.corsci.2009.08.031
Google Scholar
[24]
Y. -M. Han and M. Farzaneh, Synthesis and characterization of CeO2-Al2O3 nanocomposite coating on the AA6061 alloy. Surface and Coatings Technology, (2014).
Google Scholar
[25]
Zhong, X., et al., Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy. Corrosion Science, 2008. 50(8): pp.2304-2309.
DOI: 10.1016/j.corsci.2008.05.016
Google Scholar
[26]
Ruhi, G., et al., Wear and electrochemical characterization of sol-gel alumina coating on chemically pre-treated mild steel substrate. Surface and Coatings Technology, 2006. 201(3–4): pp.1866-1872.
DOI: 10.1016/j.surfcoat.2006.03.013
Google Scholar
[27]
Hamdy, A.S. and D.P. Butt, Environmentally compliant silica conversion coatings prepared by sol–gel method for aluminum alloys. Surface and Coatings Technology, 2006. 201(1–2): pp.401-407.
DOI: 10.1016/j.surfcoat.2005.11.142
Google Scholar
[28]
Hamdy, A.S., A clean low cost anti-corrosion molybdate based nano-particles coating for aluminum alloys. Progress in Organic Coatings, 2006. 56(2–3): pp.146-150.
DOI: 10.1016/j.porgcoat.2006.03.002
Google Scholar
[29]
Hamdy, A.S., D.P. Butt, and A.A. Ismail, Electrochemical impedance studies of sol–gel based ceramic coatings systems in 3. 5% NaCl solution. Electrochimica Acta, 2007. 52(9): pp.3310-3316.
DOI: 10.1016/j.electacta.2006.10.036
Google Scholar
[30]
Hamdy, A.S. and D.P. Butt, Novel anti-corrosion nano-sized vanadia-based thin films prepared by sol–gel method for aluminum alloys. Journal of Materials Processing Technology, 2007. 181(1–3): pp.76-80.
DOI: 10.1016/j.jmatprotec.2006.03.042
Google Scholar
[31]
Arianpour, F., M. Farzaneh, and S.A. Kulinich, Hydrophobic and ice-retarding properties of doped silicone rubber coatings. Applied Surface Science, 2013. 265(0): pp.546-552.
DOI: 10.1016/j.apsusc.2012.11.042
Google Scholar
[32]
Jiang, W. -F., et al., Photooxidation of Benzene to Phenol by Al2O3-Supported Fe(III)-5-Sulfosalicylic Acid (ssal) Complex. catalyst letters, 2009. 130: pp.463-469.
DOI: 10.1007/s10562-009-9976-0
Google Scholar
[33]
Bernard, A. and M.H. Chisholm, Synthesis of core–shell (nano)particles involving TiO2, SiO2, Al2O3 and polylactide. Polyhedron, 2012. 46(1): pp.1-7.
DOI: 10.1016/j.poly.2012.07.017
Google Scholar
[34]
Han, Y., D. Gallant, and X.G. Chen, Investigation on Corrosion Behavior of the Al-B4C Metal Matrix Composite in a Mildly Oxidizing Aqueous Environment. Corrosion, 2011. 67(11): pp.115005-11.
DOI: 10.5006/1.3659505
Google Scholar
[35]
Bico, J., U. Thiele, and D. Quéré, Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 206(1–3): pp.41-46.
DOI: 10.1016/s0927-7757(02)00061-4
Google Scholar
[36]
Cassie, A.B.D., Contact angles. Discussions of the Faraday Society, 1948. 3(0): pp.11-16.
Google Scholar
[37]
Song, X., et al., Synthesis and characterization of MCM-41 materials assembled with CeO2 nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 313–314(0): pp.193-196.
DOI: 10.1016/j.colsurfa.2007.05.040
Google Scholar
[38]
Fundeanu, I., et al., Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber. Colloids and Surfaces B: Biointerfaces, 2008. 64(2): pp.297-301.
DOI: 10.1016/j.colsurfb.2008.02.005
Google Scholar
[39]
Momen, G. and M. Farzaneh, A ZnO-based nanocomposite coating with ultra water repellent properties. Applied Surface Science, 2012. 258(15): pp.5723-5728.
DOI: 10.1016/j.apsusc.2012.02.074
Google Scholar
[40]
Wang, P., et al., Super-hydrophobic film prepared on zinc as corrosion barrier. Corrosion Science, 2011. 53(6): p.2080-(2086).
DOI: 10.1016/j.corsci.2011.02.025
Google Scholar
[41]
He, T., et al., Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater. Corrosion Science, 2009. 51(8): pp.1757-1761.
DOI: 10.1016/j.corsci.2009.04.027
Google Scholar
[42]
Gallardo, J., A. Durán, and J.J. de Damborenea, Electrochemical and in vitro behaviour of sol–gel coated 316L stainless steel. Corrosion Science, 2004. 46(4): pp.795-806.
DOI: 10.1016/s0010-938x(03)00185-9
Google Scholar