Improvement in Corrosion and Adhesion Resistance of a Al2O3-CeO2 Nanocomposite Coating on the Aluminum Alloy AA6061 via Surface Pretreatment

Article Preview

Abstract:

In the present study, a surface pretreatment method consisting of KOH etching followed by oxide thickening in boiling water was used to improve the corrosion and adhesion resistance of the coating. The coating morphology on non-pretreated and pretreated Al substrates was characterized by means of scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle measurement. FT-IR spectra was obtained by Fourier transform infrared spectrometer. The corrosion resistance of the coating in 3.5 wt.% NaCl solution was evaluated with potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. The adhesion resistance of the coating was tested using ISO-2409 standard. Results show that KOH etching followed by oxide thickening in boiling water can effectively improves the corrosion resistance and durability of the coating. Besides, this surface pretreatment method can also improve significantly the adhesion resistance of the coating.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

677-688

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zaid, B., et al., Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy. Corrosion Science, 2008. 50(7): pp.1841-1847.

DOI: 10.1016/j.corsci.2008.03.006

Google Scholar

[2] Dan, Z., I. Muto, and N. Hara, Effects of environmental factors on atmospheric corrosion of aluminium and its alloys under constant dew point conditions. Corrosion Science, 2012. 57(0): pp.22-29.

DOI: 10.1016/j.corsci.2011.12.038

Google Scholar

[3] Berkeley, D.W., H.E.M. Sallam, and H. Nayeb-hashemi, The effect of pH on the mechanism of corrosion and stress corrosion and degradation of mechanical properties of AA6061 and Nextel 440 fiber-reinforced AA6061 composite. Corrosion Science, 1998. 40(2–3): pp.141-153.

DOI: 10.1016/s0010-938x(97)00102-9

Google Scholar

[4] Grilli, R., et al., Corrosion behaviour of a 2219 aluminium alloy treated with a chromate conversion coating exposed to a 3. 5% NaCl solution. Corrosion Science, 2011. 53(4): pp.1214-1223.

DOI: 10.1016/j.corsci.2010.12.006

Google Scholar

[5] Lunder, O., et al., Formation and characterisation of a chromate conversion coating on AA6060 aluminium. Corrosion Science, 2005. 47(7): pp.1604-1624.

DOI: 10.1016/j.corsci.2004.08.012

Google Scholar

[6] Liu, Y., et al., Chromate conversion coatings on aluminium: influences of alloying. Corrosion Science, 2004. 46(2): pp.297-312.

DOI: 10.1016/s0010-938x(03)00157-4

Google Scholar

[7] Osborne, J.H., Observations on chromate conversion coatings from a sol–gel perspective. Progress in Organic Coatings, 2001. 41(4): pp.280-286.

DOI: 10.1016/s0300-9440(01)00143-6

Google Scholar

[8] Gallardo, J., et al., Effect of Sintering Temperature on the Corrosion and Wear Behavior of Protective SiO2-Based Sol-Gel Coatings. Journal of Sol-Gel Science and Technology, 2003. 27(2): pp.175-183.

DOI: 10.1023/a:1023702701850

Google Scholar

[9] Jing, C. and J. Hou, Sol-gel-derived alumina/polyvinylpyrrolidone hybrid nanocomposite film on metal for corrosion resistance. Journal of Applied Polymer Science, 2007. 105(2): pp.697-705.

DOI: 10.1002/app.26074

Google Scholar

[10] Phani, A.R., F.J. Gammel, and T. Hack, Structural, mechanical and corrosion resistance properties of Al2O3–CeO2 nanocomposites in silica matrix on Mg alloys by a sol–gel dip coating technique. Surface and Coatings Technology, 2006. 201(6): pp.3299-3306.

DOI: 10.1016/j.surfcoat.2006.07.002

Google Scholar

[11] Phani, A.R., et al., Enhanced corrosioon resistance by sol-gel-based ZrO2-CeO2 coatings on magnesium alloys. Materials and Corrosion, 2005. 56(2): pp.77-82.

DOI: 10.1002/maco.200403823

Google Scholar

[12] Sharma, A. and A.K. Singh, Electroless Ni-P and Ni-P-Al2O3 Nanocomposite Coatings and Their Corrosion and Wear Resistance. Journal of Materials Engineering and Performance, 2013. 22(1): pp.176-183.

DOI: 10.1007/s11665-012-0224-1

Google Scholar

[13] Poznyak, S.K., et al., Preparation and corrosion protective properties of nanostructured titania-containing hybrid sol–gel coatings on AA2024. Progress in Organic Coatings, 2008. 62(2): pp.226-235.

DOI: 10.1016/j.porgcoat.2007.12.004

Google Scholar

[14] Montemor, M.F. and M.G.S. Ferreira, Cerium salt activated nanoparticles as fillers for silane films: Evaluation of the corrosion inhibition performance on galvanised steel substrates. Electrochimica Acta, 2007. 52(24): pp.6976-6987.

DOI: 10.1016/j.electacta.2007.05.022

Google Scholar

[15] Andreatta, F., et al., Development and industrial scale-up of ZrO2 coatings and hybrid organic–inorganic coatings used as pre-treatments before painting aluminium alloys. Progress in Organic Coatings, 2011. 72(1–2): pp.3-14.

DOI: 10.1016/j.porgcoat.2011.01.011

Google Scholar

[16] Reddy, I.N., et al., Development of SiO2 based thin film on metal foils for space application. Ceramics International, 2013. 39(7): pp.8493-8498.

DOI: 10.1016/j.ceramint.2013.02.082

Google Scholar

[17] Schem, M., et al., CeO2-filled sol–gel coatings for corrosion protection of AA2024-T3 aluminium alloy. Corrosion Science, 2009. 51(10): pp.2304-2315.

DOI: 10.1016/j.corsci.2009.06.007

Google Scholar

[18] Li, H.X., et al., Characterization of Al2O3 ceramic coatings on 6063 aluminum alloy prepared in borate electrolytes by micro-arc oxidation. Journal of Alloys and Compounds, 2008. 462(1–2): pp.99-102.

DOI: 10.1016/j.jallcom.2007.08.046

Google Scholar

[19] Zaharescu, M., et al., SiO2 based hybrid inorganic–organic films doped with TiO2–CeO2 nanoparticles for corrosion protection of AA2024 and Mg-AZ31B alloys. Corrosion Science, 2009. 51(9): p.1998-(2005).

DOI: 10.1016/j.corsci.2009.05.022

Google Scholar

[20] Hamdy, A.S., Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys. Materials Letters, 2006. 60(21–22): pp.2633-2637.

DOI: 10.1016/j.matlet.2006.01.049

Google Scholar

[21] Kobayashi, Y., T. Ishizaka, and Y. Kurokawa, Preparation of alumina films by the sol-gel method. Journal of Materials Science, 2005. 40(2): pp.263-283.

DOI: 10.1007/s10853-005-6080-8

Google Scholar

[22] Zheng, H. -Y. and M. -Z. An, Electrodeposition of Zn–Ni–Al2O3 nanocomposite coatings under ultrasound conditions. Journal of Alloys and Compounds, 2008. 459(1–2): pp.548-552.

DOI: 10.1016/j.jallcom.2007.05.043

Google Scholar

[23] Zhong, X., et al., Effect of sintering temperature on corrosion properties of sol–gel based Al2O3 coatings on pre-treated AZ91D magnesium alloy. Corrosion Science, 2009. 51(12): pp.2950-2958.

DOI: 10.1016/j.corsci.2009.08.031

Google Scholar

[24] Y. -M. Han and M. Farzaneh, Synthesis and characterization of CeO2-Al2O3 nanocomposite coating on the AA6061 alloy. Surface and Coatings Technology, (2014).

Google Scholar

[25] Zhong, X., et al., Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy. Corrosion Science, 2008. 50(8): pp.2304-2309.

DOI: 10.1016/j.corsci.2008.05.016

Google Scholar

[26] Ruhi, G., et al., Wear and electrochemical characterization of sol-gel alumina coating on chemically pre-treated mild steel substrate. Surface and Coatings Technology, 2006. 201(3–4): pp.1866-1872.

DOI: 10.1016/j.surfcoat.2006.03.013

Google Scholar

[27] Hamdy, A.S. and D.P. Butt, Environmentally compliant silica conversion coatings prepared by sol–gel method for aluminum alloys. Surface and Coatings Technology, 2006. 201(1–2): pp.401-407.

DOI: 10.1016/j.surfcoat.2005.11.142

Google Scholar

[28] Hamdy, A.S., A clean low cost anti-corrosion molybdate based nano-particles coating for aluminum alloys. Progress in Organic Coatings, 2006. 56(2–3): pp.146-150.

DOI: 10.1016/j.porgcoat.2006.03.002

Google Scholar

[29] Hamdy, A.S., D.P. Butt, and A.A. Ismail, Electrochemical impedance studies of sol–gel based ceramic coatings systems in 3. 5% NaCl solution. Electrochimica Acta, 2007. 52(9): pp.3310-3316.

DOI: 10.1016/j.electacta.2006.10.036

Google Scholar

[30] Hamdy, A.S. and D.P. Butt, Novel anti-corrosion nano-sized vanadia-based thin films prepared by sol–gel method for aluminum alloys. Journal of Materials Processing Technology, 2007. 181(1–3): pp.76-80.

DOI: 10.1016/j.jmatprotec.2006.03.042

Google Scholar

[31] Arianpour, F., M. Farzaneh, and S.A. Kulinich, Hydrophobic and ice-retarding properties of doped silicone rubber coatings. Applied Surface Science, 2013. 265(0): pp.546-552.

DOI: 10.1016/j.apsusc.2012.11.042

Google Scholar

[32] Jiang, W. -F., et al., Photooxidation of Benzene to Phenol by Al2O3-Supported Fe(III)-5-Sulfosalicylic Acid (ssal) Complex. catalyst letters, 2009. 130: pp.463-469.

DOI: 10.1007/s10562-009-9976-0

Google Scholar

[33] Bernard, A. and M.H. Chisholm, Synthesis of core–shell (nano)particles involving TiO2, SiO2, Al2O3 and polylactide. Polyhedron, 2012. 46(1): pp.1-7.

DOI: 10.1016/j.poly.2012.07.017

Google Scholar

[34] Han, Y., D. Gallant, and X.G. Chen, Investigation on Corrosion Behavior of the Al-B4C Metal Matrix Composite in a Mildly Oxidizing Aqueous Environment. Corrosion, 2011. 67(11): pp.115005-11.

DOI: 10.5006/1.3659505

Google Scholar

[35] Bico, J., U. Thiele, and D. Quéré, Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 206(1–3): pp.41-46.

DOI: 10.1016/s0927-7757(02)00061-4

Google Scholar

[36] Cassie, A.B.D., Contact angles. Discussions of the Faraday Society, 1948. 3(0): pp.11-16.

Google Scholar

[37] Song, X., et al., Synthesis and characterization of MCM-41 materials assembled with CeO2 nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 313–314(0): pp.193-196.

DOI: 10.1016/j.colsurfa.2007.05.040

Google Scholar

[38] Fundeanu, I., et al., Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber. Colloids and Surfaces B: Biointerfaces, 2008. 64(2): pp.297-301.

DOI: 10.1016/j.colsurfb.2008.02.005

Google Scholar

[39] Momen, G. and M. Farzaneh, A ZnO-based nanocomposite coating with ultra water repellent properties. Applied Surface Science, 2012. 258(15): pp.5723-5728.

DOI: 10.1016/j.apsusc.2012.02.074

Google Scholar

[40] Wang, P., et al., Super-hydrophobic film prepared on zinc as corrosion barrier. Corrosion Science, 2011. 53(6): p.2080-(2086).

DOI: 10.1016/j.corsci.2011.02.025

Google Scholar

[41] He, T., et al., Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater. Corrosion Science, 2009. 51(8): pp.1757-1761.

DOI: 10.1016/j.corsci.2009.04.027

Google Scholar

[42] Gallardo, J., A. Durán, and J.J. de Damborenea, Electrochemical and in vitro behaviour of sol–gel coated 316L stainless steel. Corrosion Science, 2004. 46(4): pp.795-806.

DOI: 10.1016/s0010-938x(03)00185-9

Google Scholar