[1]
J. Speer, D. K. Matlock, B. C. Cooman, et al, Carbon partitioning into austenite after martensite transformation, Acta Mater., 2003, 51(9): 2611-2622.
DOI: 10.1016/s1359-6454(03)00059-4
Google Scholar
[2]
T. Y. Hsu, Self-reliance innovation on development of ultra-high strength steel, Shanghai Metals, 2009, 31(2): 1-6.
Google Scholar
[3]
T. Tsuchiyama, J. Tobata, T. Tao, et al, Quenching and partitioning treatment of a low-carbon martensitic stainless steel, Mater. Sci. Eng., A, 2012: 585-592.
DOI: 10.1016/j.msea.2011.10.125
Google Scholar
[4]
M. J. Santofimia, L. Zhao, R. Petrov, et al, Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel, Mater. Charact., 2008, 59(12): 1758-1764.
DOI: 10.1016/j.matchar.2008.04.004
Google Scholar
[5]
D. L. Shu, Mechanical Properties of Metals, Machinery Industry, Beijing, (1987).
Google Scholar
[6]
YB/T 5338-2006, Retained austenite in steel-Quantitative determination-Method of X-ray diffractometer.
Google Scholar
[7]
K. Sugimoto, J. Sakaguchi, T. Iida, et al, Stretch-flangeability of a high-strength TRIP type bainitic sheet steel, ISIJ Int., 2000, 40(9): 920-926.
DOI: 10.2355/isijinternational.40.920
Google Scholar
[8]
D. Y. Liu, H. S. Fang,B. Z. Bai, Effect of retained austenite on the impact toughness of 1500Mpa Novel low carbon Mn-Si-Cr type low alloy steel, Trans. Mater. Heat Treat., 2002, 23(4): 57-61.
Google Scholar
[9]
H. F. Yang, L. Wang, W. J. Feng, et al, Influence of Mn content and quenching temperature on microstructure and mechanical properties of Q&P steel, Mater. Heat Treat., 2011, 40: 148-152.
Google Scholar
[10]
M. Meyer, J. Mahieu, B. C. Cooman, Empirical microstructure prediction method for combined intercritical annealing and bainitic transformation of TRIP steel, Mater. Sci. Technol., 2002, 18: 1121-1132.
DOI: 10.1179/026708302225006115
Google Scholar