Photocatalytic Decolorization of Malachite Green in the Presence of Fe3O4/TiO2/CuO Nanocomposites

Article Preview

Abstract:

Fe3O4/TiO2/CuO nanocomposites have been synthesized by sol-gel method and further used as photocatalyst for decolorization of malachite green from aqueous system under UV and visible light irradiation. X-ray diffraction confirmed the phase purity and crystallinity of nanocomposites. From UV-visible spectroscopy measurements it is found that the absorption peak of TiO2 nanoparticles is shifted towards longer wavelength after formation of nanocomposites indicating a modification of bandgap. The photocatalytic activity of TiO2 nanoparticles was enhanced by hybridization under visible light irradiation. The photodegradation of malachite green was significantly reduced by the addition of tert-butyl alcohol indicated that •OH radicals played an important role in the photocatalytic mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

264-269

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Kant, D. Pathania, P. Singh, P. Dhiman, A. Kumar, Removal of malachite green and methylene blue by Fe0. 01Ni0. 01Zn0. 98 O/polyacrylamide nanocomposite using coupled adsorption and photocatalysis, Applied Catalysis B: Environmental. 147 (2014).

DOI: 10.1016/j.apcatb.2013.09.001

Google Scholar

[2] C. Galindo, P. Jacques, A. Kalt, Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2. Comparative mechanistic and kinetic investigations, Journal of Photochemical and Photobiology A: Chemistry. 130 (2000).

DOI: 10.1016/s1010-6030(99)00199-9

Google Scholar

[3] Arslan, I. A. Balcioglu, T. Tuhkanen, Advanced oxidation of synthetic dyehouse effluent by O3, H2O2/O-3 and H2O2/UV processes, Environmental Technology. 20 (1999) 921-931.

DOI: 10.1080/09593332008616887

Google Scholar

[4] K. Konitou, S. Maeda, S. Hongyou, K. Mishima, Effect of Glucose on Photocatalytic Decolorization of Dyes by TiO2, Chemical Engineering Journal. 80 (2002) 208-213.

DOI: 10.1002/cjce.5450800205

Google Scholar

[5] B. Gao, B. Liu, T. Chen, Q. Yue, Effect of aging period on the characteristics and coagulation behavior of polyferric chloride and polyferric chloride–polyamine composite coagulant for synthetic dying wastewater treatment, Journal of Hazardous Materials. 187 (2011).

DOI: 10.1016/j.jhazmat.2011.01.044

Google Scholar

[6] A. Szygula, E. Guinal, M.A. Palacin, A.M. Sastre, Removal of an anionic dye (Acid Blue 92) by coagulation–flocculation using chitosan, Journal of Environmental Management. 90 (2009) 2979-2986.

DOI: 10.1016/j.jenvman.2009.04.002

Google Scholar

[7] T.H. Kim, C. Park, S. Kim, Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration, Journal of Cleaner Production. 13 (2005) 779-786.

DOI: 10.1016/j.jclepro.2004.02.044

Google Scholar

[8] G.A. Prinz, Magnetoelectronics, Science. 282 (1998) 1660-1663.

Google Scholar

[9] A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchel- kanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future, Science. 294 (2001) 1488-1495.

DOI: 10.1126/science.1065389

Google Scholar

[10] S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim and L.A. Boatner, Wide band gap ferromagnetic semiconductors and oxides, Journal of Applied Physics. 93 (2003).

DOI: 10.1063/1.1517164

Google Scholar

[11] Q. He, Z. Zhang, J. Xiong, Y. Xiong, H. Xiao, A novel biomaterial — Fe3O4: TiO2 core-shell nano particle with magnetic performance and high visible light photocatalytic activity, Optical Materials. 31 (2008) 380–384.

DOI: 10.1016/j.optmat.2008.05.011

Google Scholar

[12] S. Shaker, S. Zafarian, C.H.S. Chakra, K. V. Rao, Preparation and characterization of magnetite nanoparticles by sol–gel method for water treatment, International Journal of Innovative Research in Science, Engineering and Technology. 2 (2013).

Google Scholar

[13] Y. Aparna, K.V.E. Rao, P. Srinivasan, Synthesis and characterization of CuO nano particles by novel sol-gel method, International Proceedings of Chemical, Biological and Environmental Engineering. 48 (2012) 156-160.

Google Scholar

[14] T. Xie, L. Xu, C. Liu, Y. Wang, Magnetic composite ZnFe2O4/SrFe12O19: preparation, characterization, and photocatalytic activity under visible light, Applied Surface Science. 273 (2013) 684–691.

DOI: 10.1016/j.apsusc.2013.02.113

Google Scholar

[15] C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Gue'rault, J.M. Greneche, Ferrimagnetic ordering in nanostructured zinc ferrite, Scripta Materialia. 44 (2001) 1407–1410.

DOI: 10.1016/s1359-6462(01)00844-2

Google Scholar

[16] J. Jing, J. Li, J. Feng, W. Li, W. W. Yu, Photodegradation of quinoline in water over magnetically separable Fe3O4/TiO2 composite photocatalysts, Chemical Engineering Journal. 219 (2013) 355–360.

DOI: 10.1016/j.cej.2012.12.058

Google Scholar

[17] A. Hasanpour, M. Niyaifar, H. Mohammadpour, J. Amighian, A novel non-thermal process of TiO2-shell coating on Fe3O4-core nanoparticles, Journal of Physics and Chemistry of Solids. 73 (2012) 1066–1070.

DOI: 10.1016/j.jpcs.2012.04.003

Google Scholar

[18] H. Yan, J. Zhang, C. You, Z. Song, B. Yu, Y. Shen, Influences of different synthesis conditions on properties of Fe3O4 nanoparticles, Materials Chemistry and Physics 113 (2009) 46-52.

DOI: 10.1016/j.matchemphys.2008.06.036

Google Scholar

[19] R.G. Freitas, M.A. Santanna, E.C. Pereira, Preparation and Characterization of TiO 2 Nanotube Arrays in Ionic Liquid for Water Splitting, Electrochimica Acta. 136 (2014) 404-411.

DOI: 10.1016/j.electacta.2014.05.097

Google Scholar

[20] D. Li, J. Hu, R. Wu, J.G. Lu, Conductometric chemical sensor based on individual CuO nanowires, Nanotechnology. 21 (2010) 485502.

DOI: 10.1088/0957-4484/21/48/485502

Google Scholar

[21] P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 120 (2014) 548-557.

DOI: 10.1016/j.saa.2013.12.006

Google Scholar

[22] B. Hapke, Theory of Reflectance and Emittance Spectroscopy, University Press, Cambridge, (1993).

Google Scholar