Fabrication of Carbon Nanomaterial Using Arc-Discharge in Liquid Method for Battery Application

Article Preview

Abstract:

This work aims to fabricate carbon-based nanomaterial using arc-discharge in liquid which is much simple and cheap compared to other techniques i.e., CVD, laser vaporization, etc. The experiment were performed using intermediate DC power supply (1300 W) to produce arc, and commercial graphite pencils (with 5 mm diameter) as negative and positive electrodes. Deionized water was used as heat absorber. The result shows that arc discharge in deionized water could effectively produce carbon nanomaterial (i.e., graphene and CNT). In adddition, finite element method-based simulation of different intercalating process of Li-ion to different shape of anode i.e., bulk and phorous anode materials for battery application is also presented in order to provide support for design of Li-ion battery based on carbon nanomaterial.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

247-251

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Nagaura, K. Tozawa, Lithium ion rechargeable battery, Prog. Batteries Sol. Cells 9 (1990) 209.

Google Scholar

[2] B. Gao, C. Bower, J.D. Lorentzen, A. Kleinhammes, X. -P. Tang, L.E. McNeil, Y. Wu, O. Zhou, Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes, Chem. Phys. Lett. 327 (2000) 69.

DOI: 10.1016/s0009-2614(00)00851-4

Google Scholar

[3] H. Shimoda, B. Gao, X.P. Tang, A. Kleinhammes, L. Fleming, Y. Wu, O. Zhou, Lithium intercalation into opened single-wall carbon nanotubes: storage capacity and electronic properties, Phys. Rev. Lett 88 (2002) 015502-1.

DOI: 10.1103/physrevlett.88.015502

Google Scholar

[4] Z.H. Yang, H.Q. Wu, Electrochemical intercalation of lithium into fullerene soot, Mater. Lett. 50 (2001) 108–114.

Google Scholar

[5] G. Maurin, Ch. Bousquet, F. Henn, P. Bernier, R. Almairac, B. Simon, Electrochemical lithium intercalation into multiwall carbon nanotubes: a micro-Raman study, Solid State Ionics 136–137 (2000) 1295–1299.

DOI: 10.1016/s0167-2738(00)00599-3

Google Scholar

[6] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes, Science 273 (1996) 483–487.

DOI: 10.1126/science.273.5274.483

Google Scholar

[7] Y. Ando, X. Zhao, H. Shimoyama, G. Sakai, K. Kaneto, Physical properties of multiwalled carbon nanotubes, Int. J. Inorg. Mater. 1 (1999) 77–82.

DOI: 10.1016/s1463-0176(99)00012-5

Google Scholar

[8] G. Van Lier, C. Van Alsenoy, V. Van Doren, G. Geerlings, Ab initio study of the elastic properties of single-walled carbon naotubes and graphene, Chem. Phys. Lett. 326 (2000) 181–185.

DOI: 10.1016/s0009-2614(00)00764-8

Google Scholar

[9] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature 381 (1996) 678–680.

DOI: 10.1038/381678a0

Google Scholar

[10] M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287 (2000) 637–640.

DOI: 10.1126/science.287.5453.637

Google Scholar

[11] S. Yang, J. Huo, H. Song, X. Chen, Electrochim, A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries, Acta 53 (2008) 2238–2244.

DOI: 10.1016/j.electacta.2007.09.040

Google Scholar

[12] C.H. Mi, G.S. Cao, X.B. Zhao, A non-GIC mechanism of lithium storage in chemical etched MWNTs, J. Electroanal. Chem. 562 (2004) 217–221.

DOI: 10.1016/j.jelechem.2003.09.004

Google Scholar

[13] A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan, Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries, Nano Lett. 9 (3) (2009) 1002–1006.

DOI: 10.1021/nl803081j

Google Scholar

[14] Y. Zhang, Z.G. Zhao, X.G. Zhang, H.L. Zhang, F. Li, C. Liu, H.M. Cheng, Pyrolytic carbon-coated silicon/Carbon Nanotube composites: promising application for Li-ion batteries, Int. J. Nanomanuf. 2 (1/2) (2008) 4–15.

DOI: 10.1504/ijnm.2008.017834

Google Scholar

[15] J.Y. Eom, J.W. Park, H.S. Kwon, S. Rajendrana, Electrochemical Insertion of Lithium into Multiwalled Carbon Nanotube/Silicon Composites Produced by Ballmilling, J. Electrochem. Soc. 153 (9) (2006) A1678–A1684.

DOI: 10.1149/1.2213528

Google Scholar

[16] Jabari, R Seresht., & M. Jahanshahi, Fullerenes Nanotubes Carbon Nanostruct 2 (2010) 1-12.

Google Scholar

[17] Biró, L., Horváth, Z., Szalmás, L., Kertész, K., Wéber, F., Juhász, G., Radnóczi, G., & Gyulai, Continuous carbon nanotube production in underwater AC electric arc, J. Chemical Physics Letters 372 (2003) 399-402.

DOI: 10.1016/s0009-2614(03)00417-2

Google Scholar

[18] T. E. Saraswati, T. Matsuda, A. Ogino, M. Nagatsu, Surface modification of graphite encapsulated iron nanoparticles by plasma processing, Diam. Relat. Mater. 20 (2011) 359-363.

DOI: 10.1016/j.diamond.2011.01.027

Google Scholar

[19] A. Goel, J. B. Howard, J. B. Vander Sande, Size analysis of single fullerene molecules by electron microscopy, Carbon 42 (2004) 1907–(1915).

DOI: 10.1016/j.carbon.2004.03.022

Google Scholar

[20] S. J. Yeo, R. Pode and J. S. Ahn, Study on the Size of Fullerene (C$_{60}$)Aggregates in Solution by Photoluminescence and HRTEMMeasurements, J. Korean Phys. Soc. 55 (2009) 322-326.

DOI: 10.3938/jkps.55.322

Google Scholar