Physical Properties and Photocatalytic Activity of Fe- and Co-Doped ZnO Nanoparticles Synthesized via Surfactant Modified Co-Precipitation

Article Preview

Abstract:

Fe- and Co-doped ZnO with various doping concentrations have been synthesized by co-precipitation method in the presence of sodium dodecyl sulfate as anionic surfactant. The obtained sample powders were characterized by X-ray diffraction, Fourier transform infrared absorption, UV-visible diffuse reflectance spectroscopy, electron spin resonance spectroscopy and Brunauer-Emmet-Teller (BET) method. The photocatalytic activity was evaluated by observing the decolorization of methylene blue under UV light irradiation. The results revealed that the addition of a dopant atom significantly enhanced the photocatalytic activity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-246

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Sol. Ener. Mater. Sol. Cells 77 (2003) 65-82.

DOI: 10.1016/s0927-0248(02)00255-6

Google Scholar

[2] S. Chakrabarti, B. K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater. B 112 (2004) 269-278.

DOI: 10.1016/j.jhazmat.2004.05.013

Google Scholar

[3] S. Rehman, R. Ullah, A. M. Butt, N. D. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater. 170 (2009) 560-569.

DOI: 10.1016/j.jhazmat.2009.05.064

Google Scholar

[4] T. Cserhati, E. Forgacs, G. Oros, Biological activity and environmental impact of anionic surfactants, Environ. Int. 22 (2002) 337-348.

Google Scholar

[5] S. K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater. 141 (2007) 581-590.

DOI: 10.1016/j.jhazmat.2006.07.035

Google Scholar

[6] D. M. A. Alrousan, P. S. M. Dunlop, T. A. McMurray, J. A. Byrne, Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films, Water Res. 43 (2009) 47-54.

DOI: 10.1016/j.watres.2008.10.015

Google Scholar

[7] J. Xie, H. Wang, M. Duan, L. Zhang, Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method, Appl. Surf. Sci. 257 (2011) 6358-6363.

DOI: 10.1016/j.apsusc.2011.01.105

Google Scholar

[8] J. Marto, P.S. Marcos, T. Trindade, J. A. Labrincha, Photocatalytic decolouration of Orange II by ZnO active layers screen-printed on ceramic tiles, J. Hazard. Mater. 163 (2009) 36-42.

DOI: 10.1016/j.jhazmat.2008.06.056

Google Scholar

[9] T. Rattana, S. Suwanboon, P. Amornpitoksuk, A. Haidoux, P. Limsuwan, Improvement of optical properties of nanocrystalline Fe-doped ZnO powders through precipitation method from citrate-modified zinc nitrate solution, J. Alloy. Comp. 480 (2009).

DOI: 10.1016/j.jallcom.2009.02.011

Google Scholar

[10] R. Salma, F. Ghribi, A. Houas, C. Barthou, L. El Mir, Visible photocatalytic properties of vanadium doped zinc oxide aerogel nanopowder, Thin Solid Films 519 (2011) 5792-5795.

DOI: 10.1016/j.tsf.2010.12.197

Google Scholar

[11] N. F. Djaja, D. A. Montja, R. Saleh, The effect of Co incorporation into ZnO nanoparticles, Adv. Mater. Phys. Chem. 3 (2013) 33-41.

DOI: 10.4236/ampc.2013.31006

Google Scholar

[12] R. Saleh, N. F. Djaja, Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light, Spectrochim. Acta, Part A 130 (2014) 581-590.

DOI: 10.1016/j.saa.2014.03.089

Google Scholar

[13] R. Saleh, N. F. Djaja, UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles, Superlattices Microstruct. 74 (2014) 217-233.

DOI: 10.1016/j.spmi.2014.06.013

Google Scholar

[14] J. C. Pivin, G. Socol, I. Mihailescu, P. Berthet, F. Singh, M. K. Patel, L. Vincent, Structure and magnetic properties of ZnO films doped with Co, Ni or Mn synthesized by pulsed laser deposition under low and high oxygen partial pressures, Thin Solid Film 517 (2008).

DOI: 10.1016/j.tsf.2008.08.125

Google Scholar

[15] I. Ozerov, F. Chabre, W. Marine, Incorporation of cobalt into ZnO nanoclusters, Mater. Sci. Eng. C 25 (2005) 614-617.

DOI: 10.1016/j.msec.2005.07.007

Google Scholar

[16] K. C. Barick, S. Singh, M. Aslam, D. Bahadur, Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters, Microporous Mesoporous Mater. 134 (2010)195-202.

DOI: 10.1016/j.micromeso.2010.05.026

Google Scholar

[17] C. Kao, J. Liao, C. Chang, R. Wang, Thermal diffusion of Co into sputtered ZnO: Co thin film for enhancing visible-light-induced photo-catalytic activity, Appl. Surf. Sci. 258 (2011) 1813-1818.

DOI: 10.1016/j.apsusc.2011.10.050

Google Scholar

[18] S. Ekamabram, Y. Ikubo, A. Kudo, Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO, J. Alloy. Comp. 433 (2007) 273-240.

Google Scholar

[19] C. Karunakaran, V. Rajeswari, P. Gomanthisankar, Enhanced photocatalytic and antibacterial activities of sol-gel synthesized ZnO and Ag-ZnO, Mater. Sci. Semicond. Process. 14 (2011) 133-138.

DOI: 10.1016/j.mssp.2011.01.017

Google Scholar

[20] N. Sapawe, A. A. Jalil, S. Triwahyono, R.N.R.A. Sah, N.W.C. Jusoh, N.H.H. Hairom, J. Efendi, Electrochemical strategy for grown ZnO nanoparticles deposited onto HY zeolite with enhanced photodecolorization of methylene blue: Effect of the formation of Si-O-Zn bonds, Appl. Catal. A 456 (2013).

DOI: 10.1016/j.apcata.2013.02.025

Google Scholar

[21] A. Nezamzadeh-Ejhieh, S. Husmandrad, The effect of CeO2 on the surface and catalytic properties of Pt/CeO2–ZrO2 catalysts for methane dry reforming, Appl. Catal. A 58 (2010) 149-159.

DOI: 10.1016/j.apcatb.2008.11.035

Google Scholar