[1]
S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Sol. Ener. Mater. Sol. Cells 77 (2003) 65-82.
DOI: 10.1016/s0927-0248(02)00255-6
Google Scholar
[2]
S. Chakrabarti, B. K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater. B 112 (2004) 269-278.
DOI: 10.1016/j.jhazmat.2004.05.013
Google Scholar
[3]
S. Rehman, R. Ullah, A. M. Butt, N. D. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater. 170 (2009) 560-569.
DOI: 10.1016/j.jhazmat.2009.05.064
Google Scholar
[4]
T. Cserhati, E. Forgacs, G. Oros, Biological activity and environmental impact of anionic surfactants, Environ. Int. 22 (2002) 337-348.
Google Scholar
[5]
S. K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater. 141 (2007) 581-590.
DOI: 10.1016/j.jhazmat.2006.07.035
Google Scholar
[6]
D. M. A. Alrousan, P. S. M. Dunlop, T. A. McMurray, J. A. Byrne, Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films, Water Res. 43 (2009) 47-54.
DOI: 10.1016/j.watres.2008.10.015
Google Scholar
[7]
J. Xie, H. Wang, M. Duan, L. Zhang, Synthesis and photocatalysis properties of ZnO structures with different morphologies via hydrothermal method, Appl. Surf. Sci. 257 (2011) 6358-6363.
DOI: 10.1016/j.apsusc.2011.01.105
Google Scholar
[8]
J. Marto, P.S. Marcos, T. Trindade, J. A. Labrincha, Photocatalytic decolouration of Orange II by ZnO active layers screen-printed on ceramic tiles, J. Hazard. Mater. 163 (2009) 36-42.
DOI: 10.1016/j.jhazmat.2008.06.056
Google Scholar
[9]
T. Rattana, S. Suwanboon, P. Amornpitoksuk, A. Haidoux, P. Limsuwan, Improvement of optical properties of nanocrystalline Fe-doped ZnO powders through precipitation method from citrate-modified zinc nitrate solution, J. Alloy. Comp. 480 (2009).
DOI: 10.1016/j.jallcom.2009.02.011
Google Scholar
[10]
R. Salma, F. Ghribi, A. Houas, C. Barthou, L. El Mir, Visible photocatalytic properties of vanadium doped zinc oxide aerogel nanopowder, Thin Solid Films 519 (2011) 5792-5795.
DOI: 10.1016/j.tsf.2010.12.197
Google Scholar
[11]
N. F. Djaja, D. A. Montja, R. Saleh, The effect of Co incorporation into ZnO nanoparticles, Adv. Mater. Phys. Chem. 3 (2013) 33-41.
DOI: 10.4236/ampc.2013.31006
Google Scholar
[12]
R. Saleh, N. F. Djaja, Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light, Spectrochim. Acta, Part A 130 (2014) 581-590.
DOI: 10.1016/j.saa.2014.03.089
Google Scholar
[13]
R. Saleh, N. F. Djaja, UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles, Superlattices Microstruct. 74 (2014) 217-233.
DOI: 10.1016/j.spmi.2014.06.013
Google Scholar
[14]
J. C. Pivin, G. Socol, I. Mihailescu, P. Berthet, F. Singh, M. K. Patel, L. Vincent, Structure and magnetic properties of ZnO films doped with Co, Ni or Mn synthesized by pulsed laser deposition under low and high oxygen partial pressures, Thin Solid Film 517 (2008).
DOI: 10.1016/j.tsf.2008.08.125
Google Scholar
[15]
I. Ozerov, F. Chabre, W. Marine, Incorporation of cobalt into ZnO nanoclusters, Mater. Sci. Eng. C 25 (2005) 614-617.
DOI: 10.1016/j.msec.2005.07.007
Google Scholar
[16]
K. C. Barick, S. Singh, M. Aslam, D. Bahadur, Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters, Microporous Mesoporous Mater. 134 (2010)195-202.
DOI: 10.1016/j.micromeso.2010.05.026
Google Scholar
[17]
C. Kao, J. Liao, C. Chang, R. Wang, Thermal diffusion of Co into sputtered ZnO: Co thin film for enhancing visible-light-induced photo-catalytic activity, Appl. Surf. Sci. 258 (2011) 1813-1818.
DOI: 10.1016/j.apsusc.2011.10.050
Google Scholar
[18]
S. Ekamabram, Y. Ikubo, A. Kudo, Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO, J. Alloy. Comp. 433 (2007) 273-240.
Google Scholar
[19]
C. Karunakaran, V. Rajeswari, P. Gomanthisankar, Enhanced photocatalytic and antibacterial activities of sol-gel synthesized ZnO and Ag-ZnO, Mater. Sci. Semicond. Process. 14 (2011) 133-138.
DOI: 10.1016/j.mssp.2011.01.017
Google Scholar
[20]
N. Sapawe, A. A. Jalil, S. Triwahyono, R.N.R.A. Sah, N.W.C. Jusoh, N.H.H. Hairom, J. Efendi, Electrochemical strategy for grown ZnO nanoparticles deposited onto HY zeolite with enhanced photodecolorization of methylene blue: Effect of the formation of Si-O-Zn bonds, Appl. Catal. A 456 (2013).
DOI: 10.1016/j.apcata.2013.02.025
Google Scholar
[21]
A. Nezamzadeh-Ejhieh, S. Husmandrad, The effect of CeO2 on the surface and catalytic properties of Pt/CeO2–ZrO2 catalysts for methane dry reforming, Appl. Catal. A 58 (2010) 149-159.
DOI: 10.1016/j.apcatb.2008.11.035
Google Scholar